
Verification of Periodically Controlled Hybrid
Systems: Application to An Autonomous Vehicle

TICHAKORN WONGPIROMSARN

California Institute of Technology

SAYAN MITRA

University of Illinois at Urbana Champaign

and

RICHARD M. MURRAY and ANDREW LAMPERSKI

California Institute of Technology

This paper introduces Periodically Controlled Hybrid Automata (PCHA) for modular specification
of hybrid control systems. In a PCHA, control actions that change the control input to the plant
occur roughly periodically, while other actions that update the state of the controller may occur
in the interim, changing the set-point of the system. Such actions could model, for example,
sensor updates and information received from higher-level planning modules that change the
set-point of the controller. Based on periodicity and subtangential conditions, a new sufficient
condition for verifying invariant properties of PCHAs is presented. Checking these conditions can
be automated using, for example, the constraint-based approach, quantifier elimination, or sum
of squares decomposition. The proposed technique is used to verify safety and progress properties
of the planner-controller subsystem of an autonomous ground vehicle. Geometric properties of
planner generated paths are derived which guarantee that such paths can be safely followed by
the controller.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Veri-
fication—Correctness proofs; Formal methods; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—Invariants; Specification techniques;
I.2.9 [Artificial Intelligence]: Robotics—Autonomous vehicles

General Terms: Verification

Additional Key Words and Phrases: Hybrid systems

1. INTRODUCTION

Design bugs in embedded systems can be fairly subtle and may arise from the
unforeseen interactions among the computing, communication, and control subsys-
tems. Consider, for example, the embedded computing system of the autonomous
vehicle Alice built at Caltech. Alice successfully accomplished two of the three tasks

Author’s address: T. Wongpiromsarn, California Institute of Technology, Mail Code 104-44, 1200
E. California Blvd., Pasadena, CA 91125.
This work is partially supported by AFOSR through the MURI program.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

Submitted, ACM Transactions on Embedded Computing Systems
http://www.cds.caltech.edu/~murray/papers/wmml09-tecs.html

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Verification of Periodically Controlled Hybrid Systems: Application to
An Autonomous Vehicle

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
California Institute of Technology,Thomas J. Watson Laboratory of
Applied Physics,Pasadena,CA,91125

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
ACM Transactions on Embedded Computing Systems, 2009 (Submitted). U.S. Government or Federal
Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

39

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

at the National Qualifying Event of the 2007 DARPA Urban Challenge [Burdick
et al. 2007], [Wongpiromsarn and Murray 2008], [DuToit et al. 2008]. In executing
the third task, which involved making left-turns while merging into traffic, its be-
havior was unsafe and almost led to a collision. Alice was stuck at the corner of
a sharp turn dangerously stuttering in the middle of an intersection. It was later
diagnosed that this behavior was caused by bad interactions between the reactive
obstacle avoidance subsystem (ROA) and the relatively slowly reacting path plan-
ner . The planner incrementally generates a sequence of waypoints based on the
road map, obstacles, and the mission goals. The ROA is designed to rapidly de-
celerate the vehicle when it gets too close to (possibly dynamic) obstacles or when
the deviation from the planned path gets too large. Finally, to protect the vehicle
steering system, Alice’s low-level controller limits the rate of steering at low speeds.
Thus, accelerating from a low speed, if the planner produces a path with a sharp
left turn, the controller is unable to execute the turn closely. Alice deviates from
the path; the ROA activates and slows it down. This cycle continues leading to
stuttering.

The above example illustrates how the design of reliable embedded systems in-
herit the difficulties involved in designing both control systems and distributed
(concurrent) computing systems. The described design bug manifests as the un-
desirable behavior only under a very specific set of conditions and only when the
controller, the ROA, and the vehicle interact in a very specific manner. Therefore,
such a bug had never got discovered by thousands of hours of our extensive simula-
tions and over three hundred miles of field testing. Formal methods provide tools
and techniques for uncovering such subtle design bugs and mathematically prove
correctness of designs. More recently, formal techniques have also been used to
automatically generate controllers that are correct by construction [Kloetzer and
Belta 2006], [Fainekos et al. 2009].

The hybrid system formalism [Alur et al. 1995], [Kaynar et al. 2005] provides
a rich mathematical language for specifying embedded systems where computing
and control components interact with physical processes. The algorithmic verifica-
tion problem for hybrid systems with general dynamics is known to be computa-
tionally hard [Henzinger et al. 1995]. Restricted subclasses that are amenable to
algorithmic analysis have been identified, such as the rectangular-initialized hybrid
automata [Henzinger et al. 1995], o-minimal hybrid automata [Lafferriere et al.
1999], and more recently planar [Prabhakar et al. 2008] and stormed [Vladimerou
et al. 2008] hybrid automata. Although these restricted subclasses improve our
understanding of the decidability frontier for hybrid systems, the imposed restric-
tions are artificial. That is, they are not representative of structures that arise
in real engineered systems. For example, initialized hybrid automata require the
continuous state of the system to be reset every time the automaton enters a new
mode (control state). STORMED hybrid automata, on the other hand, require all
the vector fields and reset maps to be monotonic with respect to a certain fixed
direction.

While real world hybrid systems are large and complex, they are also engineered,
and hence, have more structure than general hybrid automata [Alur et al. 1995].
With the motivation of abstractly capturing a common design pattern in embedded

control systems, such as Alice, and other motion control systems [Mitra et al. 2003],
in this paper we study a new subclass of hybrid automata.

Two main contributions of this paper are the following1: First, we define a class of
hybrid control systems in which certain control actions occur roughly periodically.
Each control action sets the controlling output that drives the plant or the physical
process. In the interval between two control actions the state of the plant evolves
continuously with the control input set by the first. Also, in the same interval, other
discrete actions may occur updating the state of the system. For example, such
discrete changes may correspond to sensor inputs and changes of the waypoint or
the set-point of the controller. These changes may in turn influence the computation
of the next control action.

For this class of periodically controlled hybrid systems, we present a sufficient
condition for verifying invariant properties. The key requirement in applying this
condition is to identify a collection of subset(s) C of the candidate invariant set
I, such that if the control action occurs when the system state is in C, then the
subsequent control output guarantees that the system remains in I for the next
period. The technique does not require solving the differential equations; instead,
it relies on checking conditions on the periodicity and the subtangential condition
at the boundary of I. We show how these checks can be automated using sum of
squares decomposition and semidefinite programming [Prajna et al. 2002]. These
formulations are illustrated by analyzing an example in which an invariant is au-
tomatically determined using the constraint-based approach presented in [Gulwani
and Tiwari 2008]. We believe that other techniques for finding invariants, for exam-
ple those presented in [Platzer and Clarke 2008], [Sankaranarayanan et al. 2008],
could also be effectively used for computing invariants of PCHAs. The findings
from this direction of research will be reported in a future paper.

Secondly, we apply the above technique to verify the safety and progress prop-
erties of the planner-controller subsystem of Alice. First, we verify a family of
invariants {Ik}k∈N using the above-mentioned technique. Then, we determine a se-
quence of shrinking Ik’s as the vehicle makes progress along the planned path. From
these shrinking invariants, we are able to deduce safety. That is, the deviation—
distance of the vehicle from the planned path—remains within a certain constant
bound. In the process, we also derive geometric properties of planner paths that
guarantee that they can be followed safely by the vehicle.

The remainder of the paper is organized as follows: In Section 2, we briefly
present the key definitions for the hybrid I/O automaton framework. In Section 3,
we present PCHA and a sufficient condition for proving invariance. In this section,
we also present the formulation of the sufficient conditions as a sum of squares
optimization problem for automatic verification. In Sections 4 and 5, we present
the formal model and verification of Alice’s Controller-Vehicle subsystem.

2. PRELIMINARIES

We use the Hybrid Input/Output Automata (HIOA) framework of [Lynch et al.
2003; Kaynar et al. 2005] for modelling hybrid systems and the state model-based

1The preliminary results of this paper were published in [Wongpiromsarn et al. 2009].

notations introduced in [Mitra 2007]. A Structured Hybrid I/O Automaton (SH-
IOA) is a non-deterministic state machine whose state may change instantaneously
through a transition, or continuously over an interval of time following a trajectory.

A variable structure is used for specifying the states of an SHIOA. Let V be a
set of variables. Each variable v ∈ V is associated with a type which defines the
set of values v can take. The set of valuations of V is denoted by val(V). For a
valuation v ∈ val(V) of set of variables V , its restriction to a subset of variables
Z ⊆ V is denoted by v � Z. A variable may be discrete or continuous2. Typically,
discrete variables model protocol or software state, and continuous variables model
physical quantities such as time, position, and velocity.

A trajectory for a set of variables V models continuous evolution of the values
of the variables over an interval of time. Formally, a trajectory τ is a map from
a left-closed interval of R≥0 with left endpoint 0 to val(V). The domain of τ is
denoted by τ.dom. The first state of τ , τ.fstate, is τ(0). A trajectory τ is closed
if τ.dom = [0, t] for some t ∈ R≥0, in which case we define the last time of τ ,
τ.ltime

∆= t, and the last state of τ , τ.lstate ∆= τ(t). For a trajectory τ for V , its
restriction to a subset of variables Z ⊆ V is denoted by τ ↓ Z.

For given sets of input U , output Y , and internal X variables, a state model S
is a triple (F , Inv, Stop), where (a) F is a collection of Differential and Algebraic
Inequalities (DAIs) involving the continuous variables in U, Y, and X , and (b) Inv
and Stop are predicates on X called invariant condition and stopping condition
of S. Components of S are denoted by FS , InvS and StopS . S defines a set
of trajectories, denoted by traj(S), for the set of variables V = X ∪ U ∪ Y . A
trajectory τ for V is in the set trajs(S) iff

(a) the discrete variables in X ∪ Y remain constant over τ ;
(b) the restriction of τ on the continuous variables in X ∪ Y satisfies all the DAIs

in FS ;
(c) at every point in time t ∈ dom(τ), (τ ↓ X)(t) ∈ Inv; and
(d) if (τ ↓ X)(t) ∈ Stop for some t ∈ dom(τ), then τ is closed and t = τ.ltime.

A Structured Hybrid I/O Automaton is a state machine that uses a collection of
state models for specifying its trajectories.

Definition 2.1. A Structured Hybrid I/O Automaton (SHIOA) A is a tuple
(V,Q,Q0, A,D,S) where

(a) V is a set of variables partitioned into sets of internal or state variables X ,
output variables Y and input variables U ;

(b) Q ⊆ val(X) is a set of states and Q0 ⊆ Q is a nonempty set of start states;
(c) A is a set of actions partitioned into sets of internal H, output O and input I

actions;
(d) D ⊆ Q×A×Q is a set of discrete transitions; and
(e) S is a collection of state models for U , Y , andX , such that for every S,S ′ ∈ S ,

InvS ∩ InvS′ = ∅ and Q ⊆ ⋃S∈S InvS .

2See [Mitra 2007] for formal definition of these variable dynamic types.

In addition, A satisfies the following axioms:

E1 Every input action is enabled at every state.
E2 Given any trajectory υ of the input variables U , any S ∈ S , and x ∈ InvS ,

there exists τ ∈ trajs(S) starting from x, such that either (a) τ ↓ U = υ, or (b)
τ ↓ U is a proper prefix of υ and some action in H ∪O is enabled at τ.lstate.

E1 is the standard action nonblocking axiom of I/O automata. E2 is a non-
blocking axiom for individual state models: given any trajectory υ of the input
variables and any state model, either time can elapse for the entire duration of υ,
or time elapses to a point at which some local action of A is enabled.

For a set of state variables X , a state x is an element of val(X). We denote the
valuation of a variable y ∈ X at state x, by the usual (.) notation x.y. A transition
(x, a,x′) ∈ D is written in short as x a→A x′ or as x a→ x′ when A is clear from the
context. An action a is said to enabled at x if there exists x′ such that x a→ x′. We
denote the components of a SHIOA A by XA, YA etc.

An execution of A records the valuations of all its variables and the occurrences
of all actions over a particular run. An execution is closed if it is finite and the last
trajectory in it is closed.

An execution fragment of A is a finite or infinite sequence α = τ0a1τ1a2 . . .,
such that for all i in the sequence, ai ∈ A, τ ∈ trajs(S) for some S ∈ S , and
τi.lstate

ai+1→ τi+1.fstate. An execution fragment is an execution if τ0.fstate ∈ Q0.
The first state of α, α.fstate, is τ0.fstate, and for a closed α, its last state, α.lstate,
is the last state of its last trajectory. The limit time of α, α.ltime, is defined to be∑

i τi.ltime. The set of executions and reachable states of A are denoted by ExecsA
and ReachA. A set of states I ⊆ Q is said to be an invariant of A iff ReachA ⊆ I.

3. PERIODICALLY CONTROLLED HYBRID SYSTEMS

In this section, we define a subclass of SHIOAs that is suitable for modeling sampled
control systems and embedded systems with periodic sensing and actuation. The
main result of this section, Theorem 3.4, gives a sufficient condition for proving
invariant properties of this subclass.

3.1 Periodically Controlled Hybrid I/O Automata

A Periodically Controlled Hybrid Automaton (PCHA) is an SHIOA with a set of
(control) actions that occur roughly periodically. These control actions alter the
actual control signal (input) that feeds to the plant and may change the continuous
and the discrete state variables of the automaton. The automaton may have other
actions that change only the discrete state of the automaton. These actions can
model, for example, sensor inputs and the change in the set-point of the controller
from higher-level inputs. For the sake of simplicity, we consider the PCHAs of the
form shown in Figure 1, however, Theorem 3.4 generalizes to PCHAs with other
input, output, and internal actions.

Let X ⊆ Rn, for some n ∈ N, and L,Z, and U be arbitrary types. Four key
variables of PCHA A are

(a) continuous state variable s of type X , initialized to s0,
(b) discrete state (location or mode) variable loc of type L, initialized to l0,

(c) command variable z of type Z, initialized to z0, and
(d) control variable u of type U , initialized to u0.

The continuous state generally includes the continuous state of the plant and some
internal state of the controller. The discrete state represents the mode of the system.
The command variable is used to store externally produced input commands or
sensor updates. The control variable stores the control input to the plant. Finally,
the now and next variables are used for triggering the control action periodically.

PCHA A has two types of actions: (a) through input action update A learns about
new externally produced input commands such as set-points, waypoints. When
an update(z′) action occurs, z′ is recorded in the command variable z. (b) The
control action changes the control variable u. This action occurs roughly period-
ically starting from time 0; the time gap between two successive occurrences is
within [∆1,∆1 + ∆2] where ∆1 > 0 and ∆2 ≥ 0. When control occurs, loc and s
are computed as a function of their current values and that of z, and u is computed
as a function of the new values of loc and s.

For each value of l ∈ L, the continuous state s evolves according to the trajectories
specified by state model smodel(l). That is, s evolves according to the differential
equation ṡ = fl(s, u). The timing of control behavior is enforced by the precondition
of control and the stopping condition of the state models.

1signature
internal control

3input update(z′ : Z)

5variables
internal s : X := s0

7internal discrete loc : L := l0,
z : Z := z0, u : U := u0

9internal now : R≥0 := 0,
next : R := −∆2

11

transitions

13input update(z′)
eff z := z′

16internal control
pre now ≥ next

18eff next := now + ∆1;
〈loc, s 〉:= h(loc, s, z);

20u := g(loc, s)

22trajectories
trajdef smodel(l : L)

24invariant loc = l
evolve d(now) = 1; d(s) = fl(s, u)

26stop when now = next + ∆2

Fig. 1. PHCA with parameters ∆1, ∆2, g, h, {fl}l∈L. See, for example, [Mitra 2007] for
the description of the language.

3.2 Invariant Verification

Proving invariant properties of hybrid automata is a central problem in formal
verification. Invariants are used for overapproximating the reachable states of a
given system, and therefore, can be used for verifying safety properties.

Given a candidate invariant set I ⊆ Q, we are interested in verifying that
ReachA ⊆ I. For continuous dynamical systems, checking the well-known subtan-
gential condition (see, for example [Bhatia and Szegö 1967]) provides a sufficient
condition for proving invariance of a set I that is bounded by a closed surface.
Theorem 3.4 provides an analogous sufficient condition for PCHAs. In general,
however, invariant sets I for PCHAs have to be defined by a collection of functions

instead of a single function. For each mode l ∈ L, we assume that the invariant set
Il ⊆ X for the continuous state is defined by a collection of m boundary functions
{Flk}m

k=1, where m is some natural number and each Flk : X → R is a differentiable
function3. Formally,

Il
∆= {s ∈ X | ∀k ∈ {1, . . . ,m}, Flk(s) ≥ 0} and I ∆= {x ∈ Q| x.s ∈ Ix.loc}.

Note that the overall candidate invariant set I does not restrict the values of the
command or the control variables. In the remainder of this section, we develop a set
of sufficient conditions for checking that I is indeed an invariant of a given PCHA.
Lemma 3.1 modifies the standard inductive technique for proving invariance, so that
it suffices to check invariance with respect to Control transitions and Control-free
execution fragments of length not greater than ∆1 + ∆2.

Lemma 3.1. Suppose Q0 ⊆ I and the following two conditions hold:

(a) (Control steps) For each state x,x′ ∈ Q, if x control→ x′ and x ∈ I then x′ ∈ I.
(b) (Control-free fragments) For each closed execution fragment β = τ0 update(z1)

τ1 update(z2) . . . τn starting from a state x ∈ I where each zi ∈ Z, if
x.next− x.now = ∆1 and β.ltime ≤ ∆1 + ∆2, then β.lstate ∈ I.

Then ReachA ⊆ I.

Proof. Consider any reachable state x of A and any execution α such that
α.lstate = x. We can write α as β0 control β1 control . . . βk, where each βi is control-
free execution fragment of A, i.e., execution fragments in which only update actions
occur. From condition (a), it follows that for each i ∈ {0, . . . , k}, if βi.lstate ∈ I,
then βi+1.fstate ∈ I.

Thus, it suffices to prove that for each i ∈ {0, . . . , k}, if βi.fstate ∈ I, then
βi.lstate ∈ I. We fix an i ∈ {0, . . . , k} and assume that βi.fstate ∈ I. Let βi =
τ0 update(z1) τ1 update(z2) . . . τn, where for j ∈ {0, . . . , n}, zj ∈ Z and τj is a
trajectory of A. If i = 0, then βi.ltime = 0 and βi.lstate � {loc, s} = βi.fstate �
{loc, s} since the first control action occurs at time 0 and update transitions do not
affect the value of loc and s. Therefore, βi.lstate ∈ I. Otherwise, i > 0 and since
βi starts immediately after a control action, β.fstate � next− β.fstate � now = ∆1.
From periodicity of main actions, we know that βi.ltime ≤ ∆1 +∆2, and hence from
condition (b) it follows that βi.lstate ∈ I.

Invariance of control steps can often be checked through case analysis which
can be partially automated using a theorem prover [Owre et al. 1996]. The next
key lemma provides a sufficient condition for proving invariance of control-free
fragments. Since, control-free fragments do not change the valuation of the loc
variable, for this part, we fix a value l ∈ L. For each index of the boundary
functions j ∈ {1, . . .m}, we define the set ∂Ij to be part of the set Il where the
function Flj vanishes. That is, ∂Ij

∆= {x ∈ X | Flj(x) = 0}. For the sake of brevity,
we call ∂Ij the jth boundary of Il even though strictly speaking, the jth boundary of

3Identical size m of the collections simplifies our notation; different number of boundary functions
for different values of l can be handled by extending the theorem in an obvious way.

Il is only a subset of ∂Ij according to the standard topological definition. Similarly,
we say that the boundary of Il, is ∂Il =

⋃
j∈{1,...,m} ∂Ij .

Lemma 3.2. Suppose that there exists a collection {Cj}m
j=1 of subsets of Il such

that the following conditions hold:

(a) (Subtangential) For each s0 ∈ Il \ Cj and s ∈ ∂Ij,
∂Flj(s)

∂s · fl(s, g(l, s0)) ≥ 0.
(b) (Bounded distance) ∃ cj > 0 such that ∀ s0 ∈ Cj , s ∈ ∂Ij, ||s− s0|| ≥ cj.
(c) (Bounded speed) ∃ bj > 0 such that ∀ s0 ∈ Cj , s ∈ Il, ||fl(s, g(l, s0))|| ≤ bj,
(d) (Fast sampling) ∆1 + ∆2 ≤ minj∈{1,...,m}

cj

bj
.

Then, any control-free execution fragment β, with β.ltime ≤ ∆1 +∆2, starting from
a state in Il where next− now = ∆1, remains within Il.

In Figure 2, the control and control-free fragments are shown by bullets and
lines, respectively. A fragment starting in I and leaving I, must cross ∂I1 or ∂I2.
Consider the following four cases.

(1) If u is evaluated outside both C1 and C2 (e.g. τ2, τ4 and τ6), then condition
(a) guarantees that the fragment does not cross ∂Ij where j ∈ {1, 2} because
when it reaches ∂Ij , the vector field governing its evolution points inwards with
respect to ∂Ij .

(2) If u is evaluated inside C1 but outside C2 (e.g. τ1 and τ7), then by the previous
reasoning, condition (a) guarantees that the fragment does not cross ∂I2. In
addition, conditions (b) and (c) guarantee that it takes finite time before the
fragment reaches ∂I1 and condition (d) guarantees that this finite time is at
least ∆1 + ∆2; thus, before the fragment crosses ∂I1, u is evaluated again.

(3) If u is evaluated outside C1 but inside C2 (e.g. τ3), then by a symmetric
argument, the fragment does not cross ∂I1 or ∂I2.

(4) If u is evaluated inside both C1 and C2 (e.g. τ5), then conditions (b), (c) and
(d) guarantee that u is evaluated again before fragment crosses ∂I1 or ∂I2.

Proof. We fix a control-free execution fragment β = τ0update(z1)τ1update(z2) . . . τn
such that at β.fstate, next− now = ∆1. Without loss of generality we assume that
at β.fstate, z = z1, loc = l, and s = x1, where z1 ∈ Z, l ∈ L and x1 ∈ Il. We have
to show that at β.lstate, s ∈ Il.

First, observe that for each k ∈ {0, . . . , n}, (τk ↓ s) is a solution of the differential
equation(s) d(s) = fl(s, g(l, x1)). Let τ be the pasted trajectory τ0�τ1

�. . . τn.4 Let
τ.ltime be T . Since the update action does not change s, τk.lstate � s = τk+1.fstate �
s for each k ∈ {0, . . . , n − 1}. As the differential equations are time invariant,
(τ ↓ s) is a solution of d(s) = fl(s, g(l, x1)). We define the function γ : [0, T] → X
as ∀ t ∈ [0, T], γ(t) ∆= (τ ↓ s)(t). We have to show that γ(T) ∈ Il. Suppose,
for the sake of contradiction, that there exists t∗ ∈ [0, T], such that γ(t∗) ∈ Il.
By the definition of Il, there exists i such that Fli(γ(0)) ≥ 0 and Fli(γ(t∗)) < 0.
We pick one such i and fix it for the remainder of the proof. Since Fli and γ are
continuous, from intermediate value theorem, we know that there exists a time t1

4τ1 � τ2 is the trajectory obtained by concatenating τ2 at the end of τ1.

I
l

C2

C1

2

1

1

2

4 6

7

3

5

Fig. 2. A graphical explanation of Lemma 3.2 showing an invariant set Il defined by two boundary
functions. The boundary ∂I1 is drawn in solid line whereas the boundary ∂I2 is drawn in dotted
line. The corresponding sets C1 and C2 are also shown.

before t∗ where Fli vanishes and that there is some finite time ε > 0 after t1 when
Fli is strictly negative. Formally, there exists t1 ∈ [0, t∗) and ε > 0 such that for all
t ∈ [0, t1], Fli(γ(t)) ≥ 0, Fli(γ(t1)) = 0, and for all δ ∈ (0, ε], Fli(γ(t1 + δ)) < 0.

Case 1: x1 ∈ Il \ Ci. Since Fli(γ(t1)) = 0, by definition, γ(t1) ∈ ∂Ii. But from
the value of Fli(γ(t)) where t is near to t1, we get that ∂Fli

∂t (t1) = ∂Fli

∂s (γ(t1)) ·
fl(γ(t1), g(l, x1)) < 0. This contradicts condition (a).

Case 2: x1 ∈ Ci. Since for all t ∈ [0, t1], Fli(γ(t)) ≥ 0 and Fli(γ(t1)) = 0, we get
that for all t ∈ [0, t1], γ(t) ∈ Il and γ(t1) ∈ ∂Ii. So from condition (b) and (c), we
get ci ≤ ‖γ(t1) − x1‖ =

∥∥∥∫ t1
0
fl(γ(t), g(l, x1))dt

∥∥∥ ≤ bit1. That is, t1 ≥ ci

bi
. But we

know that t1 < t∗ ≤ T and periodicity of Control actions T ≤ ∆1 + ∆2. Combining
these, we get ∆1 + ∆2 >

ci

bi
which contradicts condition (d).

For PCHAs with certain properties, the following lemma provides sufficient con-
ditions for the existence of the bounds bj and cj which satisfy the bounded distance
and bounded speed conditions of Lemma 3.2.

Lemma 3.3. For a given l ∈ L, let Ul = {g(l, s) | l ∈ L, s ∈ Il} ⊆ U and suppose Il
is compact and fl is continuous in Il ×Ul. The bounded distance and bounded speed
conditions (of Lemma 3.2) are satisfied if Cj ⊂ Il satisfies the following conditions:

Cj is closed (1)
Cj ∩ ∂Ij = ∅ (2)

Proof. From the continuity of Flj , we can assume, without loss of generality,
that ∂Ij = ∅. This is because if ∂Ij = ∅, then for all s ∈ X , it must be either
Flj(s) > 0 or Flj(s) < 0, that is, Flj is not needed to describe Il. In addition, the
case where Cj = ∅ is trivial since conditions (b) and (c) of Lemma 3.2 are satisfied
for any arbitrary large cj and arbitrary small bj. So for the rest of the proof, we
assume that ∂Ij = ∅ and Cj = ∅. Since Il is compact and Cj and ∂Ij are closed,

Cj and ∂Ij are also compact. Consider a function Gj : ∂Ij → R defined by

Gj(s) = min
s0∈Cj

‖s− s0‖,

where ‖ · ‖ is a norm on Rn. Due to the continuity of ‖ · ‖ and the compactness and
nonemptyness of Cj , Gj is continuous and since Cj ∩ ∂Ij = ∅, we get that for all
s ∈ ∂Ij , Gj(s) > 0. Since ∂Ij is compact and nonempty, Gj attains its minimum
in ∂Ij . So there exists cj > 0 such that mins∈∂Ij Gj(s) ≥ cj .

Next, consider a function Hj : Il → R defined by

Hj(s) = max
s0∈Cj

‖fl(s, g(l, s0))‖.

Using the continuity of fl, the compactness and nonemptyness of Cj and Il and
the same argument as above, we can conclude that there exists bj ≥ 0 such that
maxs∈Il

Hj(s) ≤ bj .

Theorem 3.4 combines the above lemmas and provides sufficient conditions for
invariance of I.

Theorem 3.4. Consider a PCHA A and a set I ⊆ QA. Suppose Q0A ⊆ I,
A satisfies control invariance condition of Lemma 3.1, and conditions (a)–(d) of
Lemma 3.2 for each l ∈ LA. Then ReachA ⊆ I.

Proof. The proof follows directly from Lemma 3.1 and Lemma 3.2 since if
conditions (a)–(d) of Lemma 3.2 are satisfied for any l ∈ L, then condition (b) of
Lemma 3.1 is satisfied.

Although the PCHA of Figure 1 has one action of each type, Theorem 3.4 can
be extended for periodically controlled hybrid systems with arbitrary number of
input and internal actions. For PCHAs with polynomial vector-fields, given the
semi-algebraic sets Il and Cj , checking condition (a) and finding cj and bj that
satisfy conditions (b) and (c) of Lemma 3.2 can be formulated as a sum of squares
optimization problem (provided that Il and Cj are basic semi-algebraic sets) or
proving emptiness of some certain semi-algebraic sets based on quantifier elimina-
tion. The sum of squares formulation is presented in the next section and allows
the proof to be automated using, for example, SOSTOOLS [Prajna et al. 2002].
The quantifier elimination problem can also be formulated and allows the proof
to be automated using, for example, QEPCAD [Brown 2003]. Alternatively, in
Section 3.4, we show how an invariant set can be automatically computed using the
constraint-based approach presented in [Gulwani and Tiwari 2008].

3.3 Sum of Squares Formulation for Checking the Invariant Conditions

Suppose the candidate invariant set Il is a basic semi-algebraic set, i.e., each of the
boundary functions Flk : X → R is a real polynomial. This section presents a sum
of squares formulation for the following two cases: (1) checking condition (a) and
finding the cj and bj that satisfy conditions (b) and (c) of Lemma 3.2 for a given
basic semi-algebraic subset Cj , and (2) finding a subset Cj such that conditions
(a)–(c) of Lemma 3.2 are satisfied. For the first case, the sum of squares problem is
convex and can be solved using, for example, SOSTOOLS [Prajna et al. 2002]. For
the second case, however, the problem is not convex but can still be automatically
solved using an iterative scheme as presented in [Prajna and Jadbabaie 2004].

Checking Invariant Condition for a Given Subset

Suppose Cj a basic semi-algebraic set, that is, there exists a natural number p such
that Cj can be written as

Cj = {s ∈ Il | ∀i ∈ {1, . . . , p}, Gji(s) ≥ 0} (3)

where Gji : X → R is a real polynomial for each i ∈ {1, . . . , p}. Then the set
Il \ Cj = Il ∩ Cj is given by

Il \ Cj = {s ∈ X | (Fl1(s) ≥ 0 ∩ . . . ∩ Flm ≥ 0 ∩Gj1 < 0) ∪
(Fl1(s) ≥ 0 ∩ . . . ∩ Flm ≥ 0 ∩Gj2 < 0) ∪ . . .∪
(Fl1(s) ≥ 0 ∩ . . . ∩ Flm ≥ 0 ∩Gjp < 0)}

(4)

The following provides a sufficient condition for condition (a) of Lemma 3.2.
For each k ∈ {1, . . . , p}, there exist sums of squares µk(s), ρk,i(s) and σk,i(s) for
i ∈ {1, . . . , m} and a polynomial νk(s) such that

∂Flj(s)

∂s
· fl(s, g(l, s0)) −

m�

i=1

ρk,i(s)Fli(s) − νk(s)Flj(s) −
m�

i=1

σk,i(s0)Fli(s0) + µk(s0)Gjk(s0)

is a sum of squares.

Condition (b) of Lemma 3.2 can be formulated as the following optimization
problem.

Minimize −cj such that there exist sums of squares γi(s) for i ∈ {1, . . . , m} and λi(s)
for i ∈ {1, . . . p} and a polynomial γm+1(s) such that

‖s − s0‖2 − c2j −
m�

i=1

γi(s)Fli(s) − γm+1(s)Flj(s) −
p�

i=1

λi(s0)Gji(s0)

is a sum of squares.

Finally, condition (c) of Lemma 3.2 can be formulated as the following optimiza-
tion problem.

Minimize bj such that there exist sums of squares ζi(s) for i ∈ {1, . . . , m} and ηi(s)
for i ∈ {1, . . . p} such that

b2j − ‖fl(s, g(l, s0)‖2 −
m�

i=1

ζi(s)Fli(s) −
p�

i=1

ηi(s0)Gji(s0)

is a sum of squares.

Finding a Subset for Checking the Invariant Conditions

Suppose Cj = {s ∈ Il | Gj(s) ≥ 0}. In this case, we only have to find a poly-
nomial Gj(s). This problem can be formulated as follows: Find sums of squares
η1(s), . . . , η4(s), ρi(s), σi(s), γi(s), κi(s) and ζi(s) for i ∈ {1, . . . ,m} and polyno-
mials Gj(s), ν(s) and γm+1(s) such that the followings are sums of squares

(a) Flj(s) − η1(s)Gj(s)

(b) ∂Flj(s)
∂s · fl(s, g(l, s0)) − ∑m

i=1 ρi(s)Fli(s) − ν(s)Flj(s) − ∑m
i=1 σi(s0)Fli(s0) +

η2(s0)Gj(s0),

(c) ‖s−s0‖2−c2j−
∑m

i=1 γi(s)Fli(s)−γm+1(s)Flj(s)−
∑m

i=1 κi(s0)Fli(s0)−η3(s0)Gj(s0),
and

(d) b2j − ‖fl(s, g(l, s0)‖2 −∑m
i=1 ζi(s)Fli(s) − η4(s0)Gj(s0).

3.4 Example

Consider a one-dimensional system whose the continuous state needs to be regulated
such that it stays within a certain safety region. The system has the following
variables:

(a) a continuous state variable s of type R, initialized to s0 ∈ [D− δ,D+ δ] where
D ∈ R is a system parameter and δ ∈ R≥0 is an arbitrary uncertainty in the
initial state of the system,

(b) a discrete state variable loc of type L = {0, 1},
(c) a control variable u of type U = {a1, a2} where a1 ∈ R− and a2 ∈ R+ are

system parameters.

Figure 3 shows the SHIOA specification of this state regulator system. The
control action occurs once every ∆ time starting from time 0 where ∆ ∈ R+. This
action updates the values of the variables loc and u based on the system parameter
D as follows.

A. If s > D, then loc is set to 1 (line 16). Otherwise, loc is set to 0 (line 17).
That is, the function h of line 19 of Figure 1 which updates loc and s is defined
as h = 〈hl, hs〉 where hl and hs describe the discrete transition of loc and s
respectively and

hs(loc, s, z) = s, (5)

hl(loc, s, z) =

⎧⎨
⎩ 0 if s ≤ D

1 otherwise
(6)

B. Based on the updated value of loc, u is computed using function g of line 20 of
Figure 1 which is defined as follows (lines 18–19):

g(loc, s) =

⎧⎨
⎩ a1 if loc = 1

a2 otherwise
(7)

Along a trajectory, the continuous state s evolves according to the differential
equation ṡ = u (line 22). That is, for any l ∈ L, the function fl of line 25 of Figure 1
is defined as fl(s, u) = u.

Invariant. For each mode l ∈ L, we let Il = [D−max(δ,−a1∆), D+max(δ, a2∆)].
That is, the candidate invariant set Il is defined by two boundary functions

Fl1(s) = s−D + max(δ,−a1∆), and Fl2(s) = −s+D + max(δ, a2∆). (8)

The overall candidate invariant set is then given by I ∆= {x ∈ Q| Fl1(x.s) ≥
0 and Fl2(x.s) ≥ 0}.

1signature
internal control

3input update(z′ : Z)

5variables
internal s : R := s0 ∈ [D − δ, D + δ]

7internal discrete loc : {0, 1},
u : {a1, a2}

9internal now : R≥0 := 0,
next : R≥0 := 0

12transitions
internal control

14pre now ≥ next
eff next := now + ∆;

16if s > D then loc := 1
else loc := 0 fi

18if loc = 1 then u := a1
else u := a2 fi

20

trajectories
22evolve d(now) = 1; d(s) = u

stop when now = next

Fig. 3. The state regulator system with parameters a1 ∈ R−, a2 ∈ R+, ∆ ∈ R+, δ ∈ R≥0

and D ∈ R.

Proving Invariant. We use Theorem 3.4 to show that I is in fact an invariant of
the system. Clearly, the initial state is contained in I and the control invariance
condition of Lemma 3.1 is satisfied since control actions do not change the value
of s. Thus, we only need to show that there exist subsets C1 and C2 of Il such
that conditions (a)–(d) of Lemma 3.2 are satisfied. It can be easily verified that
with C1 = [D,D + max(δ, a2∆)] and C2 = [D − max(δ,−a1∆), D], we get c1 =
max(δ,−a1∆), c2 = max(δ, a2∆), b1 = −a1, b2 = a2, and conditions (a)–(d) of
Lemma 3.2 are satisfied.

Automatically Finding an Invariant. We consider the case where a1 = −1 and
a2 = 1. Assume that an invariant Il for both modes l = 0 and l = 1 has the
following form: Il = {s ∈ R | Fl1(s) ≥ 0 and Fl2(s) ≥ 0} where Fl1(s) = s − η1,
Fl2(s) = −s + η2 and η1 ≥ D − δ and η2 ≥ D + δ are constants that need to be
computed such that all the conditions of Lemma 3.2 are satisfied.

To prove that Il is in fact an invariant, we use the sets C1 and C2 of the following
forms: C1 = {s ∈ R | G1(s) ≥ 0 and Fl2(s) ≥ 0} and C2 = {s ∈ R | Fl1(s) ≥
0 and G2(s) ≥ 0} where G1(s) = s − κ1, G2(s) = −s + κ2 and κ1 and κ2 are
constants to be determined.

Clearly, for any s, s0 ∈ R and l ∈ L, ‖fl(s, g(l, s0))‖ = ‖g(l, s0)‖ = 1. Thus,
condition (c) of Lemma 3.2 is satisfied with bj = 1 for any sets Cj and Il. With the
particular form of the sets C1, C2 and Il we have previously chosen, it can be easily
checked that the problem of finding η1, η2, κ1 and κ2 such that all the conditions
of Lemma 3.2 are satisfied for j = 1 is equivalent to finding η1, η2, κ1 and κ2 such
that for all s, s0 ∈ R, the followings are satisfied:

(a) (Fl1(s0) < 0) ∨ (Fl2(s0) < 0) ∨ (G1(s0) ≥ 0) ∨ (Fl1(s) = 0) ∨ (Fl2(s) <
0) ∨ (s0 ≤ D)

(b) κ1 ≤ η2
(c) κ1 > η1
(d) κ1 − η1 ≥ ∆

Similarly, for j = 2, the following conditions need to be satisfied for all s, s0 ∈ R:

(e) (Fl1(s0) < 0) ∨ (Fl2(s0) < 0) ∨ (G2(s0) ≥ 0) ∨ (Fl1(s) < 0) ∨ (Fl2(s) =
0) ∨ (s0 > D)

(f) κ2 ≥ η1

(g) κ2 < η2

(h) η2 − κ2 ≥ ∆

As described in [Gulwani and Tiwari 2008], the validity of condition (a) can be
proved by finding a constant λ1 and non-negative constants ν1, . . . , ν3 and µ1, . . . , µ3

such that

ν1Fl1(s0) + ν2Fl2(s0)− µ1G1(s0) + λ1Fl1(s) + ν3Fl2(s) + µ2(s0 −D) + µ3 = 0 (9)

and at least one of the µ1, µ2, µ3 is strictly positive. Similarly, the validity of
condition (e) can be proved by finding a constant λ2 and non-negative constants
ν4, . . . , ν7 and µ4, µ5 such that

ν4Fl1(s0)+ ν5Fl2(s0)−µ4G2(s0)+ ν6Fl1(s)+λ2Fl2(s)+ ν7(D− s0)+µ5 = 0 (10)

and either µ4 > 0 or µ5 > 0 (or both).
Using the tool presented in [Gulwani and Tiwari 2008], the unknowns that satisfy

(9), (10) and conditions (b)–(d) and (f)–(h) are found for D = 1, δ = 0.1 and
∆ = 0.1 to be: η1 = 0.8, η2 = 1.2, κ1 = 0.9, κ2 = 1.1, ν1 = 1, ν2 = 2, µ1 = 16,
λ1 = 0, ν3 = 0, µ2 = 17, µ3 = 1, ν4 = 0, ν5 = 0, µ4 = 20, ν6 = 0, λ2 = 0,
ν7 = 20 and µ5 = 2. That is, the invariant set is given by Il = [0.8, 1.2] (whereas
the invariant set we have verified manually is given by Il = [0.9, 1.1]).

4. AUTONOMOUS VEHICLE SYSTEM

In this section, we describe a subsystem of an autonomous ground vehicle (Alice)
consisting of the physical vehicle and the controller (see, Figure 4(a)). Vehicle cap-
tures its the position, orientation, and the velocity of the vehicle on the plane.
Controller receives information about the state of the vehicle and periodically com-
putes the input steering (φ) and the acceleration (a). Controller also receives an
infinite5 sequence of waypoints from a Planner and its objective is to compute a
and φ such that the vehicle (a) remains within a certain bounded distance emax of
the planned path, and (b) makes progress towards successive waypoints at a target
speed. Property (a) together with the assumption (possibly guaranteed by Planner)
that all planned paths are at least emax distance away from obstacles, imply that the
Vehicle does not collide with obstacles. While the Vehicle makes progress towards a
certain waypoint, the subsequent waypoints may change owing to the discovery of
new obstacles, short-cuts, and changes in the mission plan. Finally, the Controller
may receive an externally triggered brake input, to which it must react by slowing
the vehicle down.

4.1 Vehicle

The Vehicle automaton of Figure 4 specifies the dynamics of the autonomous ground
vehicle with acceleration (a) and steering angle (φ) as inputs. It has two parameters:
(a) φmax ∈ (0, π

2] is the physical limit on the steering angle, and (b) L is the
wheelbase. The main output variables of Vehicle are (a) x and y coordinates of the
vehicle with respect to a global coordinate system, (b) orientation θ of the vehicle

5The verification technique can be extended in an obvious way to handle the case where the vehicle
has to follow a finite sequence of waypoints and halt at the end.

Planner

Controller

Vehicle

Brake Controller

plan(p)

a, φ
x, y

θ, v

brake(b)

(a)

vehicle

p[seg]

p[seg + 1]

current seg.

θ

e2

e 1

d

(b)

variables
2output x:R:= x0; y:R:= y0;

θ:R:= θ0; v:R:= v0
4input a, φ: R

6trajectories
evolve d(x) = v cos(θ)

8d(y) = v sin(θ)
if |u.φ| ≤ φmax

10then d(θ) = v
L tan(φ)

else d(θ) = v
L tan(φ

|φ|φmax) fi

12if v > 0 ∨ a ≥ 0
then d(v) = a

14else d(v) = 0 fi

(c)

Fig. 4. (a) Planner-Controller system. (b) Deviation & disorientation. (c) Vehicle.

with respect to the positive direction of the x axis, and (c) vehicle’s velocity v.
These variables evolve according to the differential equations of lines 7–14. Two
aspects of this Vehicle model are noteworthy:

(i) In determining the orientation of the vehicle, if the input steering angle φ
is greater than the maximum limit φmax then the maximum steering in the
correct direction is applied.

(ii) The acceleration can be negative only if the velocity is positive, and therefore
the vehicle cannot move backwards.

This vehicle model requires bounds on minimum and maximum acceleration, how-
ever, the controller ensures that the input acceleration is always within such a
bound.

4.2 Controller

Figure 5 shows the SHIOA specification of the Controller automaton that reads
the state of the Vehicle periodically and issues acceleration and steering outputs to
achieve the aforementioned goals.

Controller is parameterized by: (a) the sampling period ∆ ∈ R+ , (b) the target
speed vT ∈ R≥0, (c) proportional control gains k1, k2 > 0, (d) a constant δ > 0
relating the maximum steering angle and the speed, (e) maximum and braking
accelerations amax > 0 and abrake < 0. Restricting the maximum steering angle
instead of the maximum steering rate is a simplifying but conservative assumption.

Given a constant relating the maximum steering rate and the speed, there exists
δ as defined above that guarantees that the maximum steering rate requirement is
satisfied.

A path is an infinite sequence of points p1, p2, . . . where pi ∈ R2, for each i. The
main state variables of Controller are the following:

(a) brake and new path are command variables that store the information received
through the most recent brake (On or Off) and plan (a path) actions.

(b) path is the current path being followed by Controller,
(c) seg is the index of the last waypoint visited in the current path. That is, seg +1

is the index of the current waypoint. The straight line joining path[seg] and
path[seg + 1] is called the current segment .

(d) deviation e1 is the signed perpendicular distance from the current position of
the vehicle to the current segment (see, Figure 4(b)).

(e) disorientation e2 is the difference between the current orientation of the vehicle
(θ) and the angle of the current segment.

(f) waypoint-distance d is the signed distance of the vehicle to the current waypoint
measured parallel to the current segment.

signature

2input plan(p:Seq[R]); brake(b : On, Off)
internal main

4

variables
6input x, y, θ, v: R

output a, φ: R := (0, 0)
8internal brake: {On, Off} := Off

path: Seq[R2] := arbitrary

10new path: Seq[R2] := path
seg: N := 1

12e1, e2, d : R := [e1,0, e2,0 , d0]
now: R := 0; next:R≥0 := 0

14

transitions
16input plan(p)

eff new path := p
18

input brake(b)
20eff brake := b

22internal main
pre now = next

24eff next := now + ∆
if path 	= new path ∨ d ≤ 0 then

26if path 	= new path
then seg := 1; path := new path

28elseif d ≤ 0
then seg := seg + 1 fi

30let �p =

�
path[seg + 1].x − path[seg].x

path[seg + 1].y − path[seg].y

�

�q =

�
path[seg + 1].y − path[seg].y

−(path[seg + 1].x − path[seg].x)

�

32�r =

�
path[seg + 1].x − x

path[seg + 1].y − y)

�

e1 := 1
‖�q‖ �q · �r

34e2 := θ − ∠�p

d := 1
‖�p‖ �p · �r

36fi

38let φd = −k1 e1 − k2 e2

φ =
φd
|φd| min(δ × v, |φd|)

40

if brake = On then a := abrake

42elseif brake = Off ∧ v < vT

then a := amax

44else a := 0 fi

46trajectories
evolve d(now) = 1

48d(e1) = v sin(e2)
d(e2) = v

L tan(φ)

50d(d) = -v cos(e2)
stop when now = next

Fig. 5. Controller with parameters vT , k1, k2 ∈ R≥0, δ, ∆ ∈ R+ and abrake < 0.

The brake(b) action is an externally controlled input action that informs the
Controller about the application of an external brake (b = On) or the removal of
the brake (b = Off). When brake(b) occurs, b is recorded in the command variable

brake. The plan(p) action is controlled by the external Planner (not presented in
this paper) and it informs the Controller about a newly planned path p. When this
action occurs, the path p is recorded in the variable new path . The main action
occurs once every ∆ time starting from time 0. This action updates the values of
the variables e1 , e2 , d , path, seg, a and φ as follows:

A. If new path (obtained from the planner) is different from path then seg is set to
1 and path is set to new path (line 27).

B. If new path is the same as path and the waypoint-distance d is less than or equal
to 0, then seg is set to seg + 1 (line 29).

C. For both of the above cases several temporary variables are computed that are
in turn used to update e1 , e2 , d as specified in Lines 33-35; otherwise these
variables remain unchanged.

D. The steering output to the vehicle φ is computed using a proportional control
law and it is restricted to be at most δ times the velocity of the vehicle for the
mechanical protection of the steering. That is, the magnitude of the steering
output φ is set to the minimum of | − k1e1 − k2e2| and v × δ (line 39).

E. The acceleration output a is computed using bang bang control law. If brake is
On then a is set to the braking deceleration abrake; otherwise, it executes amax

until the vehicle reaches the target speed, at which point a is set to 0.

Along a trajectory, the evolution of the variables are specified by the differential
equations on lines 48-50. These differential equations are derived from the update
rules described above and the differential equations governing the evolution of x, y, θ
and v.

4.3 Complete System

Let A be the composition of the Controller and the Vehicle automata. The contin-
uous state of A is defined by the valuations of x, y, θ, v, e1, e2, and d of Vehicle
and Controller. For convenience, we define a single derived variable s of type
X = R7 encapsulating all these variables. The discrete state of A is defined by
the valuations of brake, path and seg of Controller. A derived variable loc of type
L = Tuple[{On,Off }, Seq[R2],N] is defined encapsulating all these variables. It can
be checked easily that the composed automaton A is a PCHA. Appendix A describes
the variables, actions, state transition functions of the corresponding PCHA.

5. ANALYSIS OF THE SYSTEM

Overview. The informally stated goals of the system translate to the following
subgoals:

A. (safety) At all reachable states of A, the deviation (e1) of the vehicle is upper-
bounded by emax, where emax is determined in terms of system parameters.

B. (segment progress) There exist certain threshold values of deviation, disorienta-
tion, and waypoint-distance such that from any state x with greater deviation,
disorientation and waypoint-distance, the vehicle reduces its deviation and dis-
orientation with respect to the current segment, while making progress towards
its current waypoint.

C. (waypoint progress) The vehicle reaches successive waypoints.

First, in Sections 5.1 and 5.2, we define a family {Ik}k∈N of subsets of QA and using
Lemma 3.2 and Lemma 3.3, we conclude that they are invariant with respect to
the control-free execution fragments of A. From the specification of main action, we
see that the continuous state changes only occur if path = new path or waypoint-
distance d ≤ 0. Hence, using Theorem 3.4, we conclude that any execution fragment
starting in Ik remains within Ik, provided that path and current segment do not
change.

In Section 5.3, we establish the segment progress property (B) by showing that
starting from Ik, Ik+1 is reached in a finite amount of time and for k smaller than
the threshold value k∗, Ik+1 is strictly contained in Ik. Finally, in Section 5.4,
we prove an invariance of I0 and derive geometric properties of planner paths that
can be followed by A safely. These geometric properties specify the minimum
length of a path segment and the relationship between the segment length and the
maximum difference between consecutive segment orientations and are derived from
the segment progress property. An invariance of I0 provides a proof certificate that
A satisfies the safety property (A) and the waypoint progress property (C).

5.1 Family of Invariants

We define, for each k ∈ N, the set Ik that bounds the deviation of the vehicle e1
to be within [−εk, εk]. This bound on deviation alone, of course, does not give us
an inductive invariant. If the deviation is εk and the vehicle is highly disoriented,
then it would violate Ik. Thus, Ik also bounds the disorientation such that the
steering angle computed based on the proportional control law is within [−φk, φk].
To prevent the vehicle from not being able to turn at low speed and to guarantee
that the execution speed of the controller is fast enough with respect to the speed
of the vehicle, Ik also bounds the speed of the vehicle. Ik is defined in terms of
εk, φk ≥ 0 as

Ik
∆= {x ∈ Q | ∀i ∈ {1, . . .6}, Fk,i(x.s) ≥ 0} (11)

where Fk,1, . . . , Fk,6 : R7 → R are defined as follows:

Fk,1(s) = εk − s.e1; Fk,2(s) = εk + s.e1; (12)
Fk,3(s) = φk + k1s.e1 + k2s.e2; Fk,4(s) = φk − k1s.e1 − k2s.e2; (13)

Fk,5(s) = vmax − s.v; Fk,6(s) = δs.v − φb. (14)

Here vmax = vT + ∆amax and φb > 0 is an arbitrary constant. As we shall see
shortly, the choice of φb affects the minimum speed of the vehicle and also the
requirements of a brake action. We examine a state x ∈ Ik, that is, Fk,i(x.s) ≥ 0 for
any i ∈ {1, . . . 6}. Fk,1(s), Fk,2(s) ≥ 0 means s.e1 ∈ [−εk, εk]. Fk,3(s), Fk,4(s) ≥ 0
means that the steering angle computed based on the proportional control law is in
the range [−φk, φk]. Further, if φk ≤ φmax, then the computed steering satisfies the
physical constraint of the vehicle. If, in addition, we have φb ≥ φk and Fk,6(s) ≥ 0,
then the vehicle actually executes the computed steering command. Fk,5(s) ≥ 0
means that the speed of the vehicle is at most vmax. The sets Ik, projected onto
the (e1, e2) plane, for different values of the parameters εk and φk are shown in
Figure 6.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−5

−3

−1

1

3

5

e2

e 1
Fig. 6. The set Ik for different values of εk and φk, projected onto the e1, e2 plane.

For each k ∈ N, we define

θk,1 =
k1

k2
εk − 1

k2
φk (15)

θk,2 =
k1

k2
εk +

1
k2
φk (16)

That is, θk,1 and θk,2 are the values of e2 at which the proportional control law
yields the steering angle of φk and −φk respectively, given that the value of e1 is
−εk. From the above definitions, we make the following observations about the
boundary of the Ik sets: for any k ∈ N and x ∈ Ik,

(a) x.e2 ∈ [−θk,2, θk,2],
(b) Fk,1(x.s) = 0 implies x.e2 ∈ [−θk,2,−θk,1],
(c) Fk,2(x.s) = 0 implies x.e2 ∈ [θk,1, θk,2],
(d) Fk,3(x.s) = 0 implies x.e2 ∈ [−θk,2, θk,1], and
(e) Fk,4(x.s) = 0 implies x.e2 ∈ [−θk,1, θk,2].

We assume that φb and all the ε′ks and φk’s satisfy the following assumptions
that are derived from physical and design constraints on the controller. The region
in the φk,εk plane that satisfies Assumption 5.1 is shown Figure 7.

Assumption 5.1. (Vehicle and controller design)

(a) φk ≤ φb ≤ φmax and φk <
π
2

(b) 0 ≤ θk,1 ≤ θk,2 <
π
2

(c) L cotφk sin θk,2 <
k2
k1

(d) ∆ ≤ c
b where c = 1√

k2
1+k2

2

(φk − φ̃), b = vmax

√
sin2 θk,2 + 1

L2 tan2(φ̃) and φ̃ =

cot−1
(

k2
k1L sin θk,2

)
. 6

(e) tan φk

2L vmax∆ ≤ π
2

6Using Assumption 5.1(c), it can be shown that φ̃ < φk so c
b

> 0.

0 0.5 1 1.5
0

5

10

15

20

25

φk

e k

L cotφk sin θ2,k = k2
k1

θ2,k = π
2

θ1,k = 0

φk = kθ
π
4

(a)

0 0.1 0.2 0.3 0.4 0.5
0.09

0.093

0.096

0.099

0.102

0.105

0.108

φk

∆

(b)

Fig. 7. (a) The set of (εk, φk) which satisfies Assumptions 5.1 (c) and (d) and are represented by
the green region. (b) The relationship between the maximum bound on ∆ and φk for εk = 1

k1
φk.

If the vehicle is forced to slow down too much at the boundary of an Ik by
the brakes, then it may not be able to turn enough to remain inside Ik. Thus, in
verifying the above properties we need to restrict our attention to executions in
certain good brake controller in which brake inputs do not occur at low speeds and
are not too persistant. This is formalized by the next definition.

Definition 5.2. A brake controller is good if its composition with controller gives
rise to controller executions that satisfy: if a brake(On) action occurs at time
t then (a) α(t).v > φb

δ + ∆|abrake|, and (b) brake(Off) must occur within time
t+ 1

|abrake| (α(t).v − φb

δ − ∆|abrake|).

We assume that the brake controller satisfies the above assumption and for the
remainder of this section, we only consider executions in good brake controller. A
state x ∈ QA is reachable if there exists an execution in good brake controller α
with α.lstate = x.

5.2 Invariance Property

We fix a k ∈ N for the remainder of the section and denote Ik, Fk,i as I and Fi,
respectively, for i ∈ {1, . . . , 6}. As in Lemma 3.2, we define I = {s ∈ X |Fi(s) ≥ 0}
and for each i ∈ {1, . . . , 6}, ∂Ii = {s ∈ X | Fi(s) = 0} and let the functions
f1, f2, . . . , f7 : R7 × R2 → R as defined in Appendix A describe the evolution of
x, y, θ, v, e1, e2 and d, respectively. We prove that I satisfies the control-free
invariance condition of Lemma 3.1 by applying Lemma 3.2.

First, we define the sets C1, . . . , C6 and show that all the assumptions in Lemma 3.2
are satisfied. The proof does not involve solving differential equations but requires
algebraic simplification of the expressions defining the vector fields and the bound-

aries {∂Ii}i∈{1,...6} of the invariant set.

C1 = C2 = ∅ (17)

C3 = {s ∈ I | − k1s.e1 − k2s.e2 ≤ 0 ∨ L cot(−k1s.e1 − k2s.e2) sin θk,2 ≥ k2

k1
}(18)

C4 = {s ∈ I | − k1s.e1 − k2s.e2 ≥ 0 ∨ L cot(k1s.e1 + k2s.e2) sin θk,2 ≥ k2

k1
} (19)

C5 = {s ∈ I | s.v ≤ vT } (20)

C6 = {s ∈ I | s.v ≥ φb

δ
+ ∆|abrake|} (21)

From the definition of a good brake controller (Definition 5.2), we show that
when the value of the variable brake is On, the speed of the vehicle is at least
φb

δ + ∆|abrake|.
Lemma 5.3. At any reachable state x of A, if x.brake = On then x.v ≥ φb

δ +
∆|abrake|.

Proof. Consider an arbitrary execution fragment, α = τ0a1τ1a2 . . . and an ar-
bitrary i ∈ N such that (τi ↓ brake)(0) = On. Since the initial value of the variable
brake is Off , there must exist j ≤ i such that aj is a brake(On) action and for any
natural number m ∈ [j, i], am is not a brake(Off) action. Let (τj−1.lstate) � v = vb.
Since aj is a brake(On) action which does not affect v, we get (τj .fstate) � v = vb.
From Definition 5.2, vb >

φb

δ + ∆|abrake| and there must exist k > i such that ak is
a brake(Off) action and

∑k−1
m=j τm.ltime ≤ 1

|abrake| (vb − φb

δ − ∆|abrake|). So for any
t ∈ dom(τi), we get

(τi ↓ v)(t) ≥ vb + min
s,s0∈X ,l∈L

f4(s, g(l, s0))(t +
i−1∑
m=j

τm.ltime)

≥ vb + abrake(
k−1∑
m=j

τm.ltime) =
φb

δ
+ ∆|abrake|.

The next lemma shows that the subtangential, bounded distance and bounded
speed conditions (of Lemma 3.2) are satisfied with the the sets {Cj}j∈{1,...,6} defined
in (17)-(21). The proof applies Lemma 3.3. The knowledge about the reachable
state x of A with x.brake = On, provided in Lemma 5.3, is needed to prove the
subtangential condition for j = 6.

Lemma 5.4. For each l ∈ L and j ∈ {1, . . . , 6}, the subtangential, bounded dis-
tance, and bounded speed conditions (of Lemma 3.2) are satisfied.

Proof. Since C1, C2 = ∅, we see that the bounded distance and bounded speed
conditions are automatically satisfied for j = 1, 2 with any arbitrary large cj and
arbitrary small bj. Now, consider an arbitrary s0 ∈ I and s ∈ ∂I1. By definition,
F1(s) = 0. From the definition of θk,1 and θk,2 and Assumption 5.1(b), s.e2 ∈
[−θk,2,−θk,1] ⊂ (−π

2 , 0]. In addition, since s ∈ I, F6(s) = δs.v − φb ≥ 0 and since

δ > 0 and φb ≥ 0, s.v ≥ 0. Thus,

∂F1

∂s
(s) · f(s, g(l, s0)) = −de1

dt
= −s.v sin(s.e2) ≥ 0

For j = 2, the subtangential condition can be proved in a similar way.
To prove the bounded distance and the bounded speed conditions for j = 3, . . . , 6,

we apply Lemma 3.3. Let UI = {g(l, s) |l ∈ L, s ∈ I}. From the definition of I, we
get that for any s0 ∈ I, −k1s0.e1 − k2s0.e2 ∈ [−φk, φk] ⊂ (−π

2 ,
π
2). Therefore, f is

continuous in I × UI .
In addition, it can be easily checked that the projection of I onto the (e1, e2, v)

space is compact and for any j ∈ {3, . . . , 6}, Cj is closed. Since the only variables
involved in proving the control-free invariance condition of Lemma 3.1 are e1, e2
and v whose evolution along a trajectory can be described without other variables,
from the proof of Lemma 3.2 and Lemma 3.3, we see that the requirement that I is
compact can be relaxed to the requirement the projection of I onto the (e1, e2, v)
space is compact. Hence, from Lemma 3.3, to prove that conditions (a)–(c) of
Lemma 3.2 hold, we only need to show that for any l ∈ L, the following conditions
are satisfied for each j ∈ {3, . . . , 6}:
(1) Cj ∩ ∂Ij = ∅
(2) For any s0 ∈ I \ Cj and s ∈ ∂Ij ,

∂Fj

∂s · f(s, g(l, s0)) ≥ 0

Consider an arbitrary s ∈ ∂I3. From the definition of I3, −k1s.e1−k2s.e2 = φk >
0. So from Assumption 5.1(c), L cot(−k1s.e1 − k2s.e2) sin θk,2 < k2

k1
. Therefore,

C3 ∩ ∂I3 = ∅. Pick an arbitrary s0 ∈ I \ C3. From the definition of I and C3,
0 < −k1s0.e1−k2s0.e2 ≤ φk and L cot(−k1s0.e1−k2s0.e2) sin θk,2 <

k2
k1

. Combining
this with Assumption 5.1(a), we get 0 < −k1s0.e1 − k2s0.e2 ≤ π

2 and | − k1s0.e1 −
k2s0.e2| ≤ φmax. In addition, since s0 ∈ I, F6(s0) ≥ 0 and so δs0.v ≥ φb ≥ φk ≥
| − k1s0.e1 − k2s0.e2|, and since s ∈ I, s.v ≥ 0. Therefore, we can conclude that

ds.e2
dt

=
s.v

L
tan(−k1s0.e1 − k2s0.e2) ≥ 0

and from Assumption 5.1(b), s.e2 ∈ [−θk,2, θk,1] ⊂ (−π
2 , 0]. So we get

ds.e1
ds.e2

= L cot(−k1s0.e1 − k2s0.e2) sin(s.e2)

≥ −L cot(−k1s0.e1 − k2s0.e2) sin θk,2

> −k2

k1
.

Thus,

∂F3

∂s
· f(s, g(l, s0)) = k2

ds.e2
dt

+ k1
ds.e1
dt

=
ds.e2
dt

(
k2 + k1

ds.e1
ds.e2

)
≥ 0.

This completes the proof for j = 3.
For j = 4, we can follow the previous proof to show that C4 ∩ ∂I4 = ∅, ds.e2

dt ≤ 0
and ds.e1

ds.e2
> −k2

k1
, and so

∀s0 ∈ I \ C4,
∂F4

∂s
· f(s, g(l, s0)) ≥ 0.

Next, consider an arbitrary s ∈ ∂I5. From the definition of ∂I5, s.v = vmax.
Since amax,∆ > 0, vmax = vT + ∆amax > vT . Therefore, C5 ∩ ∂I5 = ∅. Pick
an arbitrary s0 ∈ I \ C5. From the definition of I and C5, vT < s0.v ≤ vmax.
Therefore, we can conclude that

∂F5

∂s
· f(s, g(l, s0)) =

⎧⎨
⎩ −abrake

0
≥ 0.

This completes the proof for j = 5.
Finally, consider an arbitrary s ∈ ∂I6. From the definition of ∂I6, s.v = φb

δ .
Since ∆, |abrake| > 0, φb

δ < φb

δ + ∆|abrake|. Therefore, C6 ∩ ∂I6 = ∅. Consider
an arbitrary s0 ∈ I \ C6. From Lemma 5.3 and the definition of f4, we see that
f4(s, g(l, s0)) = abrake only if s0.v ≥ φb

δ + ∆|abrake|. But since s0 ∈ I \ C6, from
the definition of I and C6, s0.v < φb

δ + ∆|abrake|. Therefore, f4(s, g(l, s0)) is either
0 or amax and so we can conclude that

∂F6

∂s
· f(s, g(l, s0)) = f4(s, g(l, s0)) ≥ 0.

From the definition of each Cj , we can derive the lower bound cj on the distance
from Cj to ∂Ij and the upper bound bj on the length of the vector field f where
the control variable u is evaluated when the continuous state s ∈ Cj . Using these
bounds, we prove the sampling rate condition.

Lemma 5.5. For each l ∈ L, the sampling rate condition (of Lemma 3.2) is satis-
fied.

Proof. For each j ∈ {1, . . . , 6}, we want to find cj and bj which satisfy condition
(b) and (c) of Lemma 3.2. First, we note that for j = 1, 2, Cj = ∅, so cj can be
arbitrary large and bj can be arbitrary small and therefore any ∆ ∈ R+ satisfies
the sampling rate condition of Lemma 3.2. For j = 5, 6, it can be easily shown that
c5 = ∆amax, b5 = amax, c6 = ∆|abrake| and b6 = |abrake|; thus, cj

bj
= ∆. That is, ∆

can be an arbitrary large number if we only consider j = 1, 2, 5, 6. So we only have
to consider j = 3, 4. From Assumption 5.1(c), there exists

φ̃ = cot−1

(
k2

k1L sin θk,2

)
< φk.

Using symmetry, we get that for j = 3 and j = 4, the shortest distance between Uj

and ∂Ij is then given by

cj = min
s∈∂Ij ,s0∈Uj

‖s− s0‖ =
1√

k2
1 + k2

2

(φk − φ̃).

Since ∀s ∈ I, s.e2 ∈ [−θk,2, θk,2] ⊂ (−π
2 ,

π
2), we have

bj = max
s∈I,s0∈Uj

‖f(s, g(l, s0))‖

≤ vmax

√
sin2 θk,2 +

1
L2

tan2(φ̃).

From Assumption 5.1(d), we see that ∆ ≤ minj∈{1,...,6}
cj

bj
.

Thus, all assumptions in the hypothesis of Lemma 3.2 are satisfied; from Theo-
rem 3.4 we obtain that execution fragments in good brake controller of A preserve
invariance of I, provided that the path and current segment do not change over
the fragment.

Theorem 5.6. For any plan-free execution fragment β starting at a state x ∈ I
and ending at x′ ∈ QA, if x.path = x.new path and x.seg = x′.seg, then x′ ∈ I.

Proof. From Lemmas 5.4–5.5, we see that all the conditions in Lemma 3.2 are
satisfied. Thus, we can conclude that the control-free invariance condition of Lemma
3.1 is satisfied. In addition, from the specification of main action, we see that a
discrete transition in the continuous state s only occurs when path = new path
(i.e. a new path is received) or s.d ≤ 0 (i.e. the vehicle has reached the end
of the current segment). Hence, if a closed execution β does not contain a plan
action, β.fstate � path = β.fstate � new path and β.lstate � seg = β.fstate � seg,
then a discrete transition in the continuous state s does not occur in β. Applying
Theorem 3.4, we get the desired result.

5.3 Segment Progress

In this section, we establish the segment progress property, i.e., there exist certain
threshold values of deviation, disorientation, and waypoint-distance such that from
any state x with greater deviation, disorientation and waypoint-distance, the vehicle
reduces its deviation and disorientation with respect to the current segment, while
making progress towards its current waypoint. First, we prove the progress property
over a pasted trajectory τ between any two main actions. That is, suppose right
after an occurrence of a main action, x ∈ Ik for some k ∈ N. Then, right before an
occurrance of the next main action, x ∈ Ik+1 where Ik+1 ⊆ Ik and if k is less than
some threshold k∗, then Ik+1 is strictly contained in Ik.

Next, in Lemma 5.9, we compute the bound d∗ on the maximum change in the
value of the waypoint distance d over τ . Given the progress property over τ and
the bound d∗, we can then establish the segment progress property (B) defined at
the beginning of Section 5. That is, starting from a state x and ending at x′, if
x ∈ Ik, then x′ ∈ Ik+n where an integer n ≥ 0 depends on x.d−x′.d and the system
parameters, provided that path and current segment do not change. Furthermore,
if x.d− x′.d is large enough, then n is strictly positive.

First, we solve the differential equation which describes the evolution of e1 and
e2 along τ . From periodicity of main actions we see that dom(τ) = [0,∆]. Define
the functions e1, e2, v, vavg : dom(τ) → R as follows: e1(t) = (τ ↓ e1)(t), e2(t) =
(τ ↓ e2)(t), v(t) = (τ ↓ v)(t) and vavg(t) = 1

t

∫ t

0 v(t
′)dt′. From the state models of

the Vehicle and the Controller specified in Figure 4 and Figure 5, since φ and a are
constant along τ , the solution to the differential equations can be solved analytically
and are given by

e1(t) =

⎧⎨
⎩ e1(0) + L cotφ cos e2(0) − L cotφ cos e2(t) if φ = 0

e1(0) + vavg(t)t sin e2(0) otherwise

e2(t) = e2(0) + tan φ
L vavg(t)t

(22)

where φ = τ.fstate � φ and a = τ.fstate � a.
The following lemma provides a bound on the change in e1 over τ and on the

change in φ between two consecutive main actions assuming that a discrete transi-
tion in the continuous state s does not occur.

Lemma 5.7. Suppose τ.fstate ∈ Ik for some k ∈ N. Then, |e1(0) − e1(∆)| ≤ ∆e

and |(k1e1(0) + k2e2(0)) − (k1e1(∆) + k2e2(∆))| ≤ ∆φ where ∆e = vmax∆ and

∆φ = vmax∆
(
k1 + k2

tan φk

L

)
.

Proof. From (22), we see that |e1(∆) − e1(0)| ≤ vmax∆ and |e2(∆) − e1(0)| ≤
tan φk

L vmax∆. So

|(k1e1(0) + k2e2(0)) − (k1e1(∆) + k2e2(∆))| ≤ k1|e1(∆) − e1(0)| + k2|e2(∆) − e2(0)|
≤ k1vmax∆ + k2

tanφk

L
vmax∆.

The next lemma proves the desired progress property over τ .

Lemma 5.8. Suppose τ.fstate ∈ Ik for some k ∈ N. Then τ.lstate ∈ Ik+1 whose
parameters εk+1 and φk+1 are given by

εk+1 = εk − ak (23)
φk+1 = φk − bk (24)

where ak, bk ≥ 0 and are given by

ak = εk − max
(
ε′k+1,

1
k1
φ′k+1

)
(25)

bk = φk − max(φ′k+1, ϕ) (26)

ε′k+1 =

⎧⎨
⎩ max (εk − ξk, ε

∗
k) if εk > ε∗k

εk otherwise
(27)

φ′k+1 =

⎧⎨
⎩ max (φk − ψk, φ

∗
k) if φk > φ∗k

φk otherwise
(28)

ε∗k = ε′k + vmax∆ (29)

φ∗k = φ′k + k1vmax∆ + k2
tanφk

L
vmax∆ (30)

ξk = −2L max
φ∈[−φk,φk]

cotφ sin
(
−k1

k2
ε∗k − 1

k2
φ+

tanφ
2L

vmax∆
)

sin
(

tanφ
2L

φb

δ
∆
)
(31)

ψk =
k2

L
tanφ∗k

φb

δ
∆ − 2k1L cotφ∗k sin θk,2 sin

(
tanφk

2L
vmax∆

)
(32)

ε′k = max
φ̃∈[−φk,φk]

(
− 1
k1
φ̃+

k2

k1

tan φ̃
2L

vmax∆

)
(33)

φ′k = max

(
tan−1

√
2k1L2δ

k2φb∆
sin θk,2 sin

(
tanφk

2L
vmax∆

)
,∆φ

)
(34)

where ϕ is the minimum value of φk+1 such that ε′k+1 and φk+1 satisfy Assump-
tion 5.1(c).

Proof. Since by definition εk+1 ≥ ε′k+1 and φk+1 ≥ φ′k+1, we see that if
|τ.lstate � e1| ≤ ε′k+1 and |k1(τ.lstate � e1) + k2(τ.lstate � e2)| ≤ φ′k+1, then
τ.lstate ∈ Ik+1. To show that εk+1 and φk+1 satisfy Assumption 5.1 and that
ak, bk ≥ 0, we use the following observations: (a) ψk ≥ 0 and ξk ≥ 0 and thus,
ε′k+1 ≤ εk and φ′k+1 ≤ φk, (b) given φ′k+1,

1
k1
φ′k+1 is the minimum value of εk+1

such that εk+1 and φ′k+1 satisfies Assumption 5.1, (c) given ε′k+1, ϕ is the mini-
mum value of φk+1 such that ε′k+1 and φk+1 satisfies Assumption 5.1, and (d) ϕ
decreases as ε′k+1 decreases. With these observations and the assumption that εk
and φk satisfy Assumption 5.1, it can be easily checked that (a) εk+1 ≤ εk and
φk+1 ≤ φk, (b) if εk > ε∗k and φk > φ∗k, then ε′k+1 < εk and φ′k+1 < φk, and (c) if
εk+1 = ε′k+1, then φk+1 = φ′k+1 and if φk+1 = φ′k+1, then εk+1 = ε′k+1. Thus, we
can conclude that εk+1 and φk+1 satisfy Assumption 5.1 and that if εk > ε∗k and
φk > φ∗k, then εk+1 < εk and φk+1 < φk.

So what remains to be proved are |τ.lstate � e1| ≤ ε′k+1 and |k1(τ.lstate � e1) +
k2(τ.lstate � e2)| ≤ φ′k+1. From Theorem 5.6, τ.lstate ∈ Ik. Thus, we can conclude
that φ′k+1 ≤ φk and ε′k+1 ≤ εk. This completes the proof for the second case of (27)
and (28).

Next, we prove the first case of (28). Let φf = −k1e1(0) − k2e2(0) and φl =
−k1e1(∆) − k2e2(∆). Suppose |φf | ≥ ∆φ. From (22), we get that

φl = −k1 (e1(0) + L cotφ1 cos(e2(0)) − L cotφ1 cos(e2(∆))) − k2

(
e2(0) +

tanφf

L
vavg∆

)

where vavg is the average speed of the vehicle over τ . Substituting e1(0) = −k2
k1
e2(0)−

1
k1
φf , we get

φl = φf −
(
k2

L
tanφfvavg∆ + 2k1L cotφf sin(

1
2
(e2(0) + e2(∆))) sin

(
tanφf

2L
vavg∆

))
.

Since τ.fstate, τ.lstate ∈ Ik, from the definition of θk,2, we see that |e2(0)|, |e2(∆)| ≤
θk,2. So 1

2 |e2(0) + e2(∆)| ≤ θk,2. In addition, from Theorem 5.6 and the definition
of F5 and F6, we know that φb

δ ≤ vavg ≤ vmax. From Lemma 5.8, we get that φf

and φl have the same sign. So it is easy to show that

|φl| ≤ |φf | −
(
k2

L
tan |φf |φb

δ
∆ − 2k1L cot |φf | sin θk,2 sin

(
tanφk

2L
vmax∆

))
.

Define the function Ψ : [0, φk] → R by

Ψ(φ) =
k2

L
tanφ

φb

δ
∆ − 2k1L cotφ sin θk,2 sin

(
tanφk

2L
vmax∆

)
.

That is ψk = Ψ(φ∗k). It can be easily checked that with Assumption 5.1(e), Ψ(φ)

increases with φ and vanishes when φ = tan−1

√
2k1L2δ
k2φb∆

sin θk,2 sin
(

tan φk

2L vmax∆
)

which does not exceed φ′k defined in (34). For φ > φ′k, Ψ(φ) > 0. From Lemma

5.7, we also know that for any φf ∈ [−φk, φk],

|φl| ≤ |φf | + k1vmax∆ + k2
tanφk

L
vmax∆.

Since φ∗k > φ′k, we arrive at the following conclusion:

|φl| ≤

⎧⎪⎪⎨
⎪⎪⎩

|φf | − ψk if |φf | > φ∗k
φ∗k if φ′k ≤ |φf | ≤ φ∗k
|φf | + k1vmax∆ + k2

tan φk

L vmax∆ if |φf | < φ′k

Thus, |φl| ≤ max(φk − ψk, φ
∗
k).

Finally, we prove the first case of (27). From (22), we get that

e1(∆) = e1(0) + 2L cotφ1 sin
(
e2(0) +

tanφf

2L
vavg∆

)
sin
(

tanφf

2L
vavg∆

)
.

Note that the case where φf = 0 is also captured by this equation as limφf→0 2L cotφf sin
(

tan φf

2L vavg∆
)

=
vavg∆. Define the function Ξ : [0, εk] → R by

Ξ(ε) = −2L max
φ∈[−φk,φk]

cotφ sin
(
−k1

k2
e− 1

k2
φ+

tanφ
2L

vmax∆
)

sin
(

tanφ
2L

φb

δ
∆
)
.

That is ξk = Ξ(ε∗k). It can be easily checked that with Assumption 5.1(e), Ξ(ε) >
0 for any ε > ε′k and that if e1(0) ≥ ε′k, then e2(0) ≤ −k1

k2
ε′k − 1

k2
φf and so

2L cotφf sin
(
e2(0) + tan φf

2L vavg∆
)

sin
(

tan φf

2L vavg∆
)
≤ −ξk. Using symmetry, we

can derive similar lower bound for the case where e1(0) ≤ −ε′k. From Lemma 5.7,
we also know that

|e1(∆)| ≤ |e1(0)| + vmax∆

So we arrive at the following conclusion:

|e1(∆)| ≤

⎧⎪⎪⎨
⎪⎪⎩

|e1(0)| − ξk if |e1(0)| > ε∗k
ε∗k if ε′k ≤ |e1(0)| ≤ ε∗k
|e1(0)| + vmax∆ if |e1(0)| < ε′k

Thus, |e1(∆)| ≤ max(εk − ξk, ε
∗
k).

Define k∗ to be the minimum value of k such that εk ≤ ε∗k or φk ≤ φ∗k. (If for
any k, εk > ε∗k and φk > φ∗k, just pick an arbitrary natural number k∗.) Then, for
any k < k∗, ak and bk are strictly positive, that is, Ik+1 � Ik. The plot showing
the progress in the deviation and disoriantation is shown in Figure 8.

The following lemma provides the value of the bound d∗ on the maximum change
in the value of d over τ

Lemma 5.9. Suppose τ.fstate ∈ Ik for some k ∈ N. For any t ∈ dom(τ), |(τ �
d)(t) − τ.fstate � d| ≤ d∗ where d∗ = vmax∆.

Proof. From Theorem 5.6, the definition of F5 and F6 and the definition of f7
which describes the evolution of d, we get that maxs,s0∈I ‖f7(s, g(l, s0))‖ ≤ vmax.

0 5 10 15 20 25 30
3.6

3.8

4

4.2

4.4

4.6

4.8

5

k

ε k

(a)

0 5 10 15 20 25 30

0.2

0.25

0.3

0.35

0.4

0.45

0.5

k

φ k

(b)

Fig. 8. The progress in deviation and disorientation. (a) The relationship between εk and k. (b)
The relationship between φk and k

Since dom(τ) = [0,∆], we get |(τ ↓ d)(t)−τ.fstate � d| ≤ maxs,s0∈I ‖f7(s, g(l, s0))‖∆ ≤
vmax∆.

Using Lemma 5.8 and Lemma 5.9, we establish the relationship between the
progress of Ik’s and the decrease in the value of d.

Lemma 5.10. For each k ∈ N, starting from any reachable state x ∈ Ik such that
x.d > vmax∆, x.path = x.new path and x.next = x.now, any plan-free execution
fragment β with β.ltime = ∆ satisfies β.lstate ∈ Ik+1 and β.lstate � d ≥ x.d −
vmax∆.

Proof. Since x.next = x.now and β.ltime = ∆, we see that β can be written
as β = β′ or β = β′mainτjbrake(bj)τj+1brake(bj+1) . . . τn where β′ is an execution
fragment with exactly one main action ai which occurs at time 0 and is immediately
followed by a main action in the execution, β′.ltime = ∆ and τj , . . . τn are point
trajectories. Let τ be the pasted trajectory of all the trajectories after ai in β′.
Then, τ is a pasted trajectory of all the trajectories between two main actions and
so Lemma 5.8 and Lemma 5.9 apply. Since the main action ai occurs at time 0 in
β and brake action does not affect the value of s, we see that τi−1.lstate � s = x.s.
So τi−1.lstate � d > vmax∆ > 0 and hence ai does not change the value of s. That
is, τ.fstate = x ∈ Ik. From Lemma 5.8, we get that β′.lstate ∈ Ik+1. In addition,
from Lemma 5.9, we see that β′.lstate � d ≥ x.d − vmax∆. Since x.d > vmax∆, we
get β′.lstate � d > 0. Therefore, the main action following β′ does not change the
value of s. In addition, since brake action only affects the brake variable, we see
that β.lstate � s = β′.lstate � s. Hence, we can conclude that β.lstate ∈ Ik+1 and
β.lstate � d ≥ x.d− vmax∆.

Finally, we conclude the section by establishing the segment progress property
(B) defined at the beginning of Section 5.

Theorem 5.11. For each k ∈ N, starting from any reachable state x ∈ Ik, any
reachable state x′ is in Ik+n where n = max(�x.d−x′.d

vmax∆ � − 1, 0), provided that path
and current segment do not change.

Proof. Consider an arbitrary closed execution fragment β starting at x and
ending at x′. Since by assumption, β is a plan-free execution fragment such that
β.lstate � path = β.fstate � new path and β.lstate � seg = β.fstate � seg, from
Theorem 5.6, we know that β.lstate ∈ Ik. This completes the proof for the case
where �x.d−x′d

vmax∆ � − 1 ≤ 0.
Next, consider the case where �x.d−x′.d

vmax∆ �−1 > 0. From the structure of a PCHA,
we see that next = now every ∆ time. So, the first state in β such that next = now
occurs no later than time ∆. Using Lemma 5.9, we see that at this state, d ≥
x.d−vmax∆. Applying Lemma 5.10 and using an invariance of Ik for any k proved
in Theorem 5.6, we get that β1.lstate ∈ Ik+n where n = �x.d−vmax∆−x′.d

vmax∆ �.
A sequence of shrinking Ik’s visited by A in making progress towards a waypoint

is shown in Figure 9.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−5

−4

−3

−2

−1

0

1

2

3

4

5

e
2

e 1

Fig. 9. A sequence of shrinking Ik’s visited by A in making progress towards a waypoint. Ik is
drawn in black, whereas Ik+i is drawn in red for i > 0.

5.4 Safety and Waypoint Progress: Identifying Safe Planner Paths

In this section, we derive a sufficient condition on planner paths that can be safely
followed with respect to a candidate invariant set I0 whose parameters ε0 ∈ [0, emax]
and φ0 ∈ [0, φmax] satisfy Assumption 5.1 and are chosen such that I0 contains the
initial state Q0A. Then, we prove an invariance of I0 and conclude that the safety
and waypoint progress properties (A) and (C) defined at the beginning of Section
5 are satisfied.

The proof is structured as follows. First, we consider an execution fragment
where path does not change and starting with waypoint-distance not shorter than
some threshold D∗. Lemma 5.15 uses the segment progress property established
in Section 5.3 to prove that this execution fragment preserves an invariance of
I0. Then, in Lemma 5.16 and Lemma 5.17, we show that right after a path is
changed, the waypoint-distance is not shorter than D∗ and the state of A remains
in I0. Using these results, Lemma 5.18 concludes that an execution fragment which
updates the path exactly once by the first main action preserves an invariance of
I0. Finally, we use Lemma 5.15 and Lemma 5.18 to conclude the section that I0 is
in fact an invariant of A and with this result, we conclude that the system satisfies

the safety and waypoint progress properties (A) and (C) defined at the beginning
of Section 5.

The following assumption provides sufficient conditions for planner paths that
can be safely followed. The key idea in the condition is: longer path segments can
be succeeded by sharper turns. Following a long segment, the vehicle reduces its
deviation and disorientation by the time it reaches the end, and thus, it is possible
for the vehicle to turn more sharply at the end without breaking an invariance of
I0.

Assumption 5.12. (Planner paths) Let p0, p1, . . . be a planner path; for i ∈
{0, 1, . . .}, let λi be the length of the segment pipi+1 and σi be the difference in
orientation of pipi+1 and that of pi+1pi+2. Then, for each i ∈ {0, 1, . . .},
(a) λi ≥ 2vmax∆ + ε0.
(b) Let n = �λi−ε0−2vmax∆

vmax∆ �. Then, λi and σi satisfy the following conditions:

εn ≤ 1
| cosσi| (ε0 − vmax∆| sinσi|) (35)

φn ≤ φ0 − k1vmax∆ sin |σi| − k1εn(1 − cosσi) − k2|σi| (36)

where, given ε0 and φ0, εn and φn are defined recursively for any n > 0 by
εn = εn−1 − an−1 and φn = φn−1 − bn−1 where an−1, bn−1 are defined in
Lemma 5.8.

The relationship between λ and the maximum value of σ which satisfies this
assumption is shown in Figure 10.

0 5 10 15 20
0

2

4

6

8

10

12

14

λ (m)

|σ
| (

de
gr

ee
)

L = 3, δ = 0.1

L = 3.5, δ = 0.1

L = 4, δ = 0.1

L = 3.5, δ = 0.05

L = 3.5, δ = 0.15

Fig. 10. Segment length vs. maximum difference between consecutive segment orientations, for
different values of L and δ.

Remark 5.13. The choice of ε0’s and φ0’s affects both the requirements on a
safe path (Assumption 5.12) and the definition of a good brake controller (Defin-
ition 5.2). Larger ε0’s and φ0’s allow sharper turns in planned paths but forces
brakes to occur only at higher speeds. That is, relaxing the constraint on a path
results in the tighter constraint on a brake action. This tradeoff is related to the
design flaw of Alice as discussed in the introduction of the paper. Without having

quantified the tradeoff, we inadvertently allowed a path to have sharp turns and
also brakes at low speeds—thus violating safety.

To establish that I0 is an invariant of A, we further assume that (a) new planner
paths begin at the current position, (b) Vehicle is not too disoriented with respect
to new paths, and (c) Vehicle speed is not too high as stated in Assumption 5.14.

Assumption 5.14. (plan action and new path)

(a) Any new path p = p1p2 . . . satisfies p1 = [xp, yp] where xp and yp are the values
of the variable x and y, respectively, when the path is received (i.e. when the
plan action occurs). That is, for any new input path, the path must begin at
the current position of the vehicle.

(b) Let vp and θp be the speed and the orientation of the vehicle, respectively, when
a plan action occurs. Then,

vp <
ε0

∆
√

1 + sin2 θ0,2

− amax∆

where given ε0 and φ0, θ0,2 is defined as in (16). In addition, let p = p1p2 . . .
be the received path and let �p be the vector which represents a straight line
defined by p1 and p2. Then,

|∠�p− θp| ≤ φ0

k2
− (vp + amax∆)∆

(
k1

k2

√
1 + sin2 θ0,2 +

tanφ0

L

)
.

First, we consider an execution fragment where path does not change and starting
with a large enough waypoint-distance. The following lemma uses the progress
property established in Section 5.3 to shows that before switching to the next
segment, x ∈ In where n ≥ 0 depends on the segment length. Since we restrict the
sharpness of the turn with respect to segment length (Assumption 5.12), we can
then conclude that this execution fragment preserves an invariance of I0.

Lemma 5.15. Consider a plan-free execution fragment β starting at a state x ∈ I0.
Suppose x.path = x.new path and x.d ≥ D∗ where D∗ = λ1 − ε0 − vmax∆ and λ1

is the length of the segment x.seg. Then β.lstate ∈ I0.

Proof. First, observe that β can be written as β = β1a1β2a2 . . . βm where
for any i, ai is a main action and βi is a plan-free execution fragment such that
βi.lstate � path = βi.fstate � new path and βi.lstate � seg = βi.fstate � seg. From
Theorem 5.6, we get that for any i, if βi.fstate ∈ I0, then β.lstate ∈ I0. So,
suppose β1.fstate ∈ I0, β1.fstate � path = β1.fstate � new path and β1.fstate � d ≥
λ1 − ε0 − vmax∆. We only need to show that for any i > 1, βi.fstate ∈ I0.

Consider the base case i = 2. If β2.fstate � seg = β1.lstate � seg, then a1 does not
change the continuous state s, and so β2.fstate ∈ I0. Otherwise, β2.fstate � seg =
β1.fstate � seg+1. But from the update rule of the variable seg and Lemma 5.9, it
can be easily shown that −vmax∆ < β1.lstate � d ≤ 0. Applying Theorem 5.11, we
get that β1.lstate ∈ In where n = �λ1−ε0−2vmax∆

vmax∆ � because by Assumption 5.12(a),
λ1 − ε0 − 2vmax∆ > 0.

Let x1 = β1.lstate and x2 = β2.fstate and let σ1 be the difference between the
orientation of β1.fstate � seg and β1.fstate � seg+1. From the update rule for e1 and

the definition of �p, �q and �r in Figure 5, it can be shown that x2.e1 = x1.d sinσ1 +
x1.e1 cosσ1. But since β1.lstate ∈ In, from the definition of In, |x1.e1| ≤ εn.
Therefore, using the bounds on x1.d provided earlier in the proof, we get |x2.e1| ≤
vmax∆| sinσ1| + εn| cosσ1|. Hence, from Assumption 5.12(b), |x2.e1| ≤ ε0, that is,
F1(x2.s), F2(x2.s) ≥ 0.

Next, we prove that F3(x2.s), F4(x2.s) ≥ 0. From the definition of In, we know
that −k1

k2
x1.e1 − 1

k2
φn ≤ x1.e2 ≤ −k1

k2
x1.e1 + 1

k2
φn. From the update rule for e2, it

can be easily shown that x2.e2 = x1.e2 − σ1. Thus, we get that −k1
k2

x1.e1 − 1
k2
φn −

σ1 ≤ x2.e2 ≤ −k1
k2

x1.e1 + 1
k2
φn−σ1. Using the bounds on x2.e1, x2.e2 and x1.d, we

can derive that k1x2.e1 +k2x2.e2 ≤ k1vmax∆ sin |σ1|+k1εn(1−cosσ1)+φn +k2|σ1|
and k1x2.e1 + k2x2.e2 ≥ −k1vmax∆ sin |σ1| − k1εn(1 − cosσ1) − φn − k2|σ1|. That
is,

|k1x2.e1 + k2x2.e2| ≤ k1vmax∆ sin |σ1| + k1εn(1 − cosσ1) + φn + k2|σ1|
Therefore, Assumption 5.12(b) guarantees that |k1x2.e1 + k2x2.e2| ≤ φ0. That
is, F3(x2.s), F4(x2.s) ≥ 0. In addition, since a main action does not affect v,
F5(x2.s) = F5(x1.s) and F6(x2.s) = F6(x1.s), so F5(x2.s), F6(x1.s) ≥ 0.

Therefore, by definition of I0, we get β2.fstate ∈ I0. In addition, from the bounds
on x1.d and x1.e1, it can be easily shown that β2.fstate � d ≥ λ2−ε0−vmax∆ where
λ2 is the length of the segment β2.fstate � seg.

Next, consider an arbitrary i ≥ 2 and assume that βi−1.fstate ∈ I0 and if i = 2
or i > 2 and βi−1.fstate � seg = βi−2.lstate � seg, then βi−1.fstate � d ≥ λi−1 −
ε0 − vmax∆ where λi−1 is the length of the segment βi−1.fstate � seg. Simply
following the previous proof for i = 2, we get βi.fstate ∈ I0 and if βi.fstate � seg =
βi−1.lstate � seg, then βi.fstate � d ≥ λi − ε0 − vmax∆ where λi is the length of the
segment βi.fstate � seg.

By mathematical induction, we conclude the proof that for any i > 1, βi.fstate ∈
I0.

The next two lemmas show that Assumption 5.14 is sufficient to guarantee that
if a path is changed, then all the assumptions in the Lemma 5.15 are satisfied.

Lemma 5.16. For each state x,x′ ∈ Q such that x.path = x.new path, if x ∈ I0

and x main→ x′, then x′.d ≥ λ− vmax∆ > 0 where λ is the length of the first segment
of x.new path.

Proof. Consider an arbitrary execution α = τ0a1τ1a2 Pick an arbitrary
natural number i such that ai is a main action and let x = τi−1.lstate and x′ =
τi.fstate. We want to show that if x � path = x � new path, then x′.d ≥ λ −
vmax∆ > 0. Notice that x.path = x.new path if and only if there exists a natural
number j < i such that aj is a plan action and for any natural number k ∈ {j +
1, . . . , i−1}, ak is not a main action. Using Assumptions 5.14(a), we get 〈τj .fstate �
x, τj .fstate � y〉 = pi,1 where pi,1 is the first waypoint in x.new path. Since main
action occurs every ∆ time, the time between ai and aj is at most ∆. Therefore,
from Theorem 5.6, the definition of F5 and F6 and the definition of f1 and f2
which describe the evolution of x and y, we see that ‖〈x.x,x.y〉 − pi,1‖ ≤ vmax∆.
Furthermore, from Assumption 5.12(a), we know that λ = ‖pi,2−pi,1‖ > vmax∆+ε0

where pi,2 is the second waypoint in pi. Thus, x.d ≥ ‖pi,2 − pi,1‖ − ‖〈x.x,x.y〉 −
pi,1‖ ≥ λ− vmax∆ > 0.

Lemma 5.17. For each state x,x′ ∈ Q such that x.path = x.new path, if x ∈ I0

and x main→ x′, then x′ ∈ I0.

Proof. Consider an arbitrary execution α = τ0a1τ1a2 Pick an arbitrary
natural number i such that ai is a main action and let x = τi−1.lstate and x′ =
τi.fstate. We want to show that if x ∈ I0 and x.path = x.new path, then x′ ∈ I0.
So suppose x ∈ I0. Notice that x.path = x.new path if and only if there exists a
natural number j < i such that aj is a plan action and for any natural number k ∈
{j+1, . . . , i−1}, ak is not a main action. Let pj1 and pj2 be the first two waypoints
of the new path. Consider a closed execution fragment β = τjaj+1 . . . τi−1. From
Assumption 5.14(a), we get that pj1 = τj .fstate � 〈x, y〉. Since main action occurs
every ∆ time, we see that β.ltime ≤ ∆. From the differential equations describing
the evolution of x and y, we get that

|(τj .fstate � x) − (x.x)| ≤ ((τj .fstate � v) + amax∆)∆
|(τj .fstate � y) − (x.y)| ≤ sin θ0,2((τj .fstate � v) + amax∆)∆

So from the definition of �r in Figure 5, we get that

‖�r‖ ≤ (τj .fstate � v) + amax∆)∆
√

1 + sin2 θ0,2

Using Assumption 5.14(b), we can conclude that ‖�r‖ ≤ ε0. So from the update rule
for e1, |x′.e1| ≤ ‖�r‖ and so

|x′.e1| ≤ (τj .fstate � v) + amax∆)∆
√

1 + sin2 θ0,2 ≤ ε0, (37)

that is F1(x′.s), F2(x′.s) ≥ 0.
Similarly, from the differential equation describing the evolution of θ, we get that

|(τj .fstate � θ) − (x.θ)| ≤ 1
L

tanφ0((τj .fstate � v) + amax∆)∆

Using condition (1) of Assumption 5.14(b), we can conclude that

|∠�p− (x.θ)| = |(∠�p− (τj .fstate � θ)) + ((τj .fstate � θ) − (x.θ))|
≤ |(∠�pi − (τj .fstate � θ))| + |((τj .fstate � θ) − (x.θ))|
≤ φ0

k2
− k1

k2
((τj .fstate � v) + amax∆)∆

√
1 + sin2 θ0,2

So we get

|k2x′.e2| ≤ φ0 − k1((τj .fstate � v) + amax∆)∆
√

1 + sin2 θ0,2

Combining this with (37), we get that

|k1(x′.e1) + k2(x′.e2)| ≤ |k1(x′.e1)| + |k2(x′.e2)| ≤ φ0,

that is, F3(x′.s), F4(x′.s) ≥ 0.

In addition, since main action does not affect v, we see that F5(x′.s) = F5(x.s)
and F6(x′.s) = F6(x.s), so F5(x′.s), F6(x′.s) ≥ 0. Therefore, by definition of I0,
we get that x′ ∈ I0.

Using the previous three lemmas, the following lemma concludes that an execu-
tion fragment which updates the path exactly once by the first main action preserves
an invariance of I0.

Lemma 5.18. Consider a plan-free execution fragment β starting at a state x ∈ I0.
If x.path = x.new path, then β.lstate ∈ I0.

Proof. β can be written as β = β1mainβ2 where β1 = τ0brakeτ1brake . . . τn and
β2 is a plan-free execution fragment with β2.fstate � path = β2.fstate � new path.
Clearly, β1.lstate � path = β1.lstate � new path. In addition, β1.fstate ∈ I0 and
thus, from Theorem 5.6, β1.lstate ∈ I0. Applying Lemma 5.16 and Lemma 5.17,
we see that β2.fstate � d ≥ λ1 − vmax∆ ≥ λ1 − ε0− vmax∆ and β2.fstate ∈ I0 where
λ1 is the length of the first segment of x.new path. Therefore, from Lemma 5.15,
β.lstate ∈ I0.

Finally, we conclude that I0 is an invariant of A.

Theorem 5.19. Suppose the initial state x0 ∈ I0 and x0.d ≥ λ1−ε0−vmax∆ where
λ1 is the length of the first segment of the initial path. Then, I0 is an invariant of
A.

Proof. Any execution α can be written as α = β1planβ2plan . . . where β1 is a
plan-free execution fragment with β1.fstate � path = β1.fstate � new path and for
any i ≥ 2, βi is a plan-free execution fragment with βi.fstate � path = βi.fstate �
new path. Since plan action does not affect the variable s, if β1.lstate ∈ I0, then
β2.fstate ∈ I0 and using Lemma 5.18, we get that for any i ≥ 2, βi.lstate ∈ I0.
Thus, we only need to show that β1.lstate ∈ I0. But this is true from Lemma 5.15
since β1.fstate � d = x0.d ≥ λ1 − ε0 − vmax∆ and β1.fstate ∈ I0.

Since for any state x ∈ I0, |x.e1| ≤ ε0 ≤ emax, invariance of I0 guarantees
the safety property (A). For property (C), we note that for any state x ∈ I0,
there exists vmin > 0 such that x.v ≥ vmin > 0 and |x.e2| ≤ θ0,2 <

π
2 , that is,

ḋ = f7(x.s, u) ≤ −vmin cos θ0,2 < 0 for any u ∈ U . Thus, it follows that the
waypoint distance decreases and the vehicle makes progress towards its waypoint.

The simulation results are shown in Figure 11 which illustrate that the vehicle
is capable of making a sharp left turn, provided that the path satisfies Assump-
tion 5.12. In addition, we are able to replicate the stuttering behavior described in
the Introduction when Assumption 5.12 is violated.

6. CONCLUSIONS

Motivated by a design bug that caused an undesirable behavior of Alice, an au-
tonomous vehicle built at Caltech for the 2007 DARPA Urban Challenge, this
paper introduced Periodically Controlled Hybrid Automata (PCHA), a subclass of
Hybrid I/O Automata that is suitable for modeling sampled control systems and
embedded systems with periodic sensing and actuation. New sufficient conditions
for verifying invariant properties of PCHAs were presented. These conditions can

−40 −30 −20 −10 0 10
−20

−15

−10

−5

0

5

10

15

Total Time: 9.6s

x (m)

y
(m

)

−40 −30 −20 −10 0 10
−20

−15

−10

−5

0

5

10

15

Total Time: 25.7s

x (m)

y
(m

)

Fig. 11. The positions of the vehicle as it follows a path to execute a sharp left turn. The
solid line and the dashed line represent, respectively, the path and the positions of the
vehicle. The initial path is drawn in thick solid (black) line. The positions of the vehicle
are plotted in thin dashed (blue) line except when brake is triggered in which case they are
plotted in thick dashed (red) line. Left. The path satisfies Assumption 5.12. Right. The
path does not satisfy Assumption 5.12 and the replan occurs due to excessive deviation.
The replanned paths are drawn in thin solid (grey) line.

be automatically checked using, for example, the constraint-based approach, quan-
tifier elimination, or sum of squares decomposition. The intuition behind these
conditions is that for an execution fragment to leave an invariant set I, it needs
to cross the boundary ∂I of I. Hence, to verify invariance of I, it is suffice to
identify a subset C of I such that: (1) there is enough separation between C and
∂I to ensure that if a control law is evaluated when the state is inside C, then it
is evaluated again before an execution fragment reaches ∂I, and (2) if the control
law is evaluated when the state is outside C, then the vector field on ∂I points
inwards with respect to ∂I. These conditions can be generalized to the case where
a collection of subsets C’s corresponding to different parts of ∂I is needed to prove
invariance of I. An example presented in the paper describes how an invariant set
can be automatically determined using the constraint-based approach.

We then applied the proposed technique to verify a sequence of invariant proper-
ties of the planner-controller subsystem of Alice. Geometric properties of planner
generated paths are derived which guarantee that such paths can be safely followed
by the controller. The analysis revealed that the software design was not inherently
flawed; the undesirable behavior was caused by an unfortunate choice of certain pa-
rameters. The simulation results verified that with the proper choice of parameters,
the observed failure does not occur.

An interesting direction for future research is towards automatic invariant proofs
of PCHAs combining the proofs for invariance of control steps and for invariance of
control-free fragments based on the results of Lemma 3.1. Invariance of control steps
can be partially automated using a theorem prover (e.g. PVS [Owre et al. 1996])
while invariance of control-free fragments can be automated using software tools for
solving sum of squares problems (e.g. SOSTOOLS [Prajna et al. 2002]) or software
tools for quantifier elimination (e.g. QEPCAD [Brown 2003], the constraint-based
approach [Gulwani and Tiwari 2008]). We are currently examining a collection of

PCHAs with polynomial dynamics for which this direction is promising. Another
direction of future research is related to the progress property. Although the basic
principle is straightforward, the details of the progress proof in Sections 5.3 and 5.4
are quite involved. This is partly owing to the difficulty of finding the appropriate
Lyapunov functions. In the future, we plan on investigating this further and use
ideas from [Chandy et al. 2008] for the progress proof. A longer term goal is to
integrate all these proof techniques within the TEMPO [TEM 2008] environment.

7. ACKNOWLEDGMENTS

The authors gratefully acknowledge Sumit Gulwani and Ashish Tiwari for letting
us use their nonlinear solver for solving ∃∀ problems.

REFERENCES

2008. Tempo toolset, version 0.2.2 beta. http://www.veromodo.com/tempo/.

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P.-H., Nicollin, X.,
Olivero, A., Sifakis, J., and Yovine, S. 1995. The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138, 1, 3–34.

Bhatia, N. P. and Szegö, G. P. 1967. Dynamical Systems: Stability Theory and Applications.
Lecture notes in mathematics, vol. 35. Springer-Verlag, Berlin; New York.

Brown, C. W. 2003. QEPCAD b: a program for computing with semi-algebraic sets using cads.
SIGSAM Bull. 37, 4, 97–108.

Burdick, J. W., DuToit, N., Howard, A., Looman, C., Ma, J., Murray, R. M., and Wong-

piromsarn, T. 2007. Sensing, navigation and reasoning technologies for the DARPA Urban
Challenge. Tech. rep., DARPA Urban Challenge Final Report.

Chandy, K. M., Mitra, S., and Pilotto, C. 2008. Convergence verification: From shared
memory to partially synchronous systems. In Proceedings of Formal Modeling and Analysis of
Timed Systems (FORMATS‘08). LNCS, vol. 5215. Springer Verlag, 217–231.

DuToit, N. E., Wongpiromsarn, T., Burdick, J. W., and Murray, R. M. 2008. Situational
reasoning for road driving in an urban environment. In International Workshop on Intelligent
Vehicle Control Systems (IVCS).

Fainekos, G. E., Girard, A., Kress-Gazit, H., and Pappas, G. J. 2009. Temporal logic motion
planning for dynamic robots. Automatica 45, 2, 343–352.

Gulwani, S. and Tiwari, A. 2008. Constraint-based approach for analysis of hybrid systems. In
20th International Conference on Computer Aided Verification (CAV).

Henzinger, T. A., Kopke, P. W., Puri, A., and Varaiya, P. 1995. What’s decidable about
hybrid automata? In ACM Symposium on Theory of Computing. 373–382.

Kaynar, D. K., Lynch, N., Segala, R., and Vaandrager, F. 2005. The Theory of Timed
I/O Automata. Synthesis Lectures on Computer Science. Morgan Claypool. Also available as
Technical Report MIT-LCS-TR-917.

Kloetzer, M. and Belta, C. 2006. A fully automated framework for control of linear systems
from ltl specifications. In HSCC. 333–347.

Lafferriere, G., Pappas, G. J., and Yovine, S. 1999. A new class of decidable hybrid systems.

In Hybrid Systems : Computation and Control. Springer, 137–151.

Lynch, N., Segala, R., and Vaandrager, F. 2003. Hybrid I/O automata. Information and
Computation 185, 1 (August), 105–157.

Mitra, S. 2007. A verification framework for hybrid systems. Ph.D. thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA 02139.

Mitra, S., Wang, Y., Lynch, N., and Feron, E. 2003. Safety verification of model helicopter
controller using hybrid Input/Output automata. In Hybrid Systems: Computation and Control,
O. Maler and A. Pnueli, Eds. LNCS, vol. 2623. Springer, 343–358.

Owre, S., Rajan, S., Rushby, J., Shankar, N., and Srivas, M. 1996. PVS: Combining specifi-

cation, proof checking, and model checking. In Computer-Aided Verification, CAV ’96, R. Alur
and T. A. Henzinger, Eds. Number 1102 in LNCS. Springer-Verlag, New Brunswick, NJ, 411–
414.

Platzer, A. and Clarke, E. M. 2008. Computing differential invariants of hybrid systems as
fixedpoints. In CAV, A. Gupta and S. Malik, Eds. Lecture Notes in Computer Science, vol.
5123. Springer, 176–189.

Prabhakar, P., Vladimerou, V., Viswanathan, M., and Dullerud, G. E. 2008. A decidable
class of planar linear hybrid systems. In Hybrid Systems: Computation and Control, 11th
International Workshop, HSCC 2008, St. Louis, MO, USA, April 22-24, 2008. Proceedings.
LNCS, vol. 4981. Springer, 401–414.

Prajna, S. and Jadbabaie, A. 2004. Safety verification of hybrid systems using barrier certifi-
cates. In Hybrid Systems: Computation and Control, R. Alur and G. J. Pappas, Eds. LNCS,
vol. 2993. Springer, 477–492.

Prajna, S., Papachristodoulou, A., and Parrilo, P. A. 2002. Introducing SOSTOOLS: A
general purpose sum of squares programming solver. In Proceedings of the 41st IEEE Conf. on
Decision and Control. 741–746.

Sankaranarayanan, S., Sipma, H. B., and Manna, Z. 2008. Constructing invariants for hybrid
systems. Formal Methods in System Design 32, 1, 25–55.

Vladimerou, V., Prabhakar, P., Viswanathan, M., and Dullerud, G. E. 2008. Stormed
hybrid systems. In ICALP (2). LNCS, vol. 5126. Springer, 136–147.

Wongpiromsarn, T., Mitra, S., Murray, R. M., and Lamperski, A. 2009. Periodically con-
trolled hybrid systems: Verifying a controller for an autonomous vehicle. In Hybrid Systems:
Computation and Control, R. Majumdar and P. Tabuada, Eds. LNCS, vol. 5469. Springer,
396–410.

Wongpiromsarn, T. and Murray, R. M. 2008. Distributed mission and contingency man-
agement for the DARPA urban challenge. In International Workshop on Intelligent Vehicle
Control Systems (IVCS).

APPENDIX

A. VEHICLE‖CONTROLLER AS A PCHA

Here we show that the composed automaton A = Vehicle‖Controller is a periodically
controlled hybrid automaton. We define an automaton A′ that is identical to A
except that its variables, actions, and transition functions are renamed to match
the definition of the generic PCHA of Figure 1.

Variables. A′ has the following variables.

(a) A continuous state variable s ∆= 〈x, y, θ, v, e1, e2, d〉 of type X = R7.

(b) A discrete state variable loc ∆= 〈brake, path, seg〉 of type L = Tuple[{On,Off }, Seq[R2],N].
(c) A control variable is u = 〈a, φ〉 of type U = R2.

(d) Two command variables z1
∆= brake of type Z1 = {On,Off } and z2 = path of

type Z2 = Seq[R2].

Actions and transitions. A has two input update actions, brake(b) and plan(p),
and the command variables z1 and z2 store the values b and p, respectively, when
these actions occur.

An internal control action main occurs every ∆ time, starting from time 0. That
is, values of ∆1 and ∆2 as defined in a generic PCHA are ∆1 = ∆ and ∆2 = 0. The
control law function g and the state transition function h of A can be derived from
the specification of main action in Figure 5. Let g = 〈ga, gφ〉 where ga : L×X → R

and gφ : L × X → R represent the control law for a and φ, respectively, and are
given by

ga(l, s) =

⎧⎪⎪⎨
⎪⎪⎩
abrake if l.brake = On

amax if l.brake = Off ∧ s0.v < vT

0 otherwise

gφ(l, s) =
φd

|φd| min(δ × s.v, |φd|)

where φd = −k1s.e1−k2s.e2. Let h = 〈hl,1, hl,2, hl,3, hs,1, . . . , hs,7〉 where hs,1, . . . , hs,7 :
L × X × Z1 × Z2 → R describe the discrete transition of x, y, θ, v, e1, e2
and d components of s, respectively, and hl,1 : L × X × Z1 × Z2 → {On,Off },
hl,2 : L × X × Z1 × Z2 → Seq[R2] and hl,3 : L × X × Z1 × Z2 → N describe the
discrete transition of brake, path and seg, respectively. Then, the function h is
given by

hs,1(l, s, z1, z2) = s.x, hs,2(l, s, z1, z2) = s.y,

hs,3(l, s, z1, z2) = s.v, hs,4(l, s, z1, z2) = s.θ,

hs,5(l, s, z1, z2) =

⎧⎨
⎩ s.e1 if l.path = z2 ∧ s.d > 0

1
‖�q‖�q · �r otherwise

,

hs,6(l, s, z1, z2) =

⎧⎨
⎩ s.e2 if l.path = z2 ∧ s.d > 0

s.θ − ∠�p otherwise
,

hs,7(l, s, z1, z2) =

⎧⎨
⎩ s.d if l.path = z2 ∧ s.d > 0

1
‖�p‖�p · �r otherwise

,

hl,1(l, s, z1, z2) = z1, hl,2(l, s, z1, z2) = z2,

hl,3(l, s, z1, z2) =

⎧⎪⎪⎨
⎪⎪⎩

1 if l.path = z2

l.seg + 1 if l.path = z2 ∧ s.d ≤ 0

l.seg otherwise

where the temporary variable �p, �q and �r are computed as in the Controller specifi-
cation based on the updated value of path and seg.

Trajectories. From the the state models of Vehicle and Controller automata spec-
ified on line 14 of Figure 4 and lines 48-50 of Figure 5, we see that A only has
one state model. For any value of l ∈ L, the continuous state s evolves ac-
cording to the differential equation ṡ = f(s, u) where f = 〈f1, f2, . . . , f7〉 and
f1, . . . , f7 : X ×U → R are associated with the evolution of the x, y, θ, v, e1, e2 and
d components of s, respectively. Using the definition of the control law function g

defined above, we can derive the following components of f(s, g(l, s0)):

f1(s, g(l, s0)) = s.v cos(s.θ), f2(s, g(l, s0)) = s.v sin(s.θ)

f3(s, g(l, s0)) = f6(s, g(l, s0)) =
s.v

L
tan(

φd

|φd| min(|φd|, δs0.v, φmax))

f4(s, g(l, s0)) =

⎧⎪⎪⎨
⎪⎪⎩
abrake if l.brake = On ∧ s.v > 0

amax if l.brake = Off ∧ s0.v < vT

0 otherwise

f5(s, g(l, s0)) = s.v sin(s.e2)
f7(s, g(l, s0)) = −s.v cos(s.e2)

where φd = −k1s0.e1 − k2s0.e2.

